You Zhang , LvYing Wu , Jun Wang , Yuan Bai , Jian Xiao , Burno Coutard , Hua Pei , Fei Deng , Shu Shen
{"title":"Latitude-driven patterns and dynamics in Jingmen group viral lineages: Spatial correlation, recombination, and phylogeography","authors":"You Zhang , LvYing Wu , Jun Wang , Yuan Bai , Jian Xiao , Burno Coutard , Hua Pei , Fei Deng , Shu Shen","doi":"10.1016/j.meegid.2025.105744","DOIUrl":null,"url":null,"abstract":"<div><div>The global emergence of Jingmen group viruses (JMVs), including Jingmen tick virus (JMTV), Alongshan virus (ALSV), and Yanggou tick virus (YGTV), has significantly broadened our perspective on the potential public health risks posed by segmented flaviviruses. However, the global evolutionary and genetic epidemiology of JMVs remains unclear. In this study, we conducted a comprehensive analysis of the spatial correlation, recombination, and phylogeography of JMVs. Our phylogenetic analysis identified three latitudinal lineages: (1) a mid–high-latitude group with YGTV and ALSV, prevalent in Europe and Asia; (2) a mid-latitude group with JMTV in Romania, Turkey, Kosovo, Trinidad, and Tobago; and (3) a mid–low-latitude group with JMTV and the Sichuan tick virus in Brazil, Japan, China, Kenya, and Uganda. The strong correlation between genetic distance and latitude also supports a latitude-dependent evolutionary pattern. Notably, concordance between the phylogenies of dominant tick species and JMVs underscores the pivotal role of tick species in the evolution of JMVs. Furthermore, the detection of frequent intra-lineage recombination and global migration events underscores the ecological pressures and tick-mediated evolutionary mechanisms that propel the global dissemination of emerging segmented flaviviruses. Additionally, the complex interplay of JMV recombination and migration events of JMVs identified here, particularly the recombination between JMTV and ALSV from disparate regions and viral migration across different regions and continents, complicates their evolutionary interrelationships and heightens potential health risks. Overall, our study provides valuable insights into ecological factors and tick species-mediated evolution and transmission that shape the global spread of emerging segmented flaviviruses.</div></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":"130 ","pages":"Article 105744"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134825000334","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
The global emergence of Jingmen group viruses (JMVs), including Jingmen tick virus (JMTV), Alongshan virus (ALSV), and Yanggou tick virus (YGTV), has significantly broadened our perspective on the potential public health risks posed by segmented flaviviruses. However, the global evolutionary and genetic epidemiology of JMVs remains unclear. In this study, we conducted a comprehensive analysis of the spatial correlation, recombination, and phylogeography of JMVs. Our phylogenetic analysis identified three latitudinal lineages: (1) a mid–high-latitude group with YGTV and ALSV, prevalent in Europe and Asia; (2) a mid-latitude group with JMTV in Romania, Turkey, Kosovo, Trinidad, and Tobago; and (3) a mid–low-latitude group with JMTV and the Sichuan tick virus in Brazil, Japan, China, Kenya, and Uganda. The strong correlation between genetic distance and latitude also supports a latitude-dependent evolutionary pattern. Notably, concordance between the phylogenies of dominant tick species and JMVs underscores the pivotal role of tick species in the evolution of JMVs. Furthermore, the detection of frequent intra-lineage recombination and global migration events underscores the ecological pressures and tick-mediated evolutionary mechanisms that propel the global dissemination of emerging segmented flaviviruses. Additionally, the complex interplay of JMV recombination and migration events of JMVs identified here, particularly the recombination between JMTV and ALSV from disparate regions and viral migration across different regions and continents, complicates their evolutionary interrelationships and heightens potential health risks. Overall, our study provides valuable insights into ecological factors and tick species-mediated evolution and transmission that shape the global spread of emerging segmented flaviviruses.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .