The Role of Autophagy in Excitotoxicity, Synaptic Mitochondrial Stress and Neurodegeneration.

Autophagy reports Pub Date : 2025-01-01 Epub Date: 2025-03-10 DOI:10.1080/27694127.2025.2464376
Charleen T Chu
{"title":"The Role of Autophagy in Excitotoxicity, Synaptic Mitochondrial Stress and Neurodegeneration.","authors":"Charleen T Chu","doi":"10.1080/27694127.2025.2464376","DOIUrl":null,"url":null,"abstract":"<p><p>Brain and nervous system functions depend upon maintaining the integrity of synaptic structures over the lifetime. Autophagy, a key homeostatic quality control system, plays a central role not only in neuronal development and survival/cell death, but also in regulating synaptic activity and plasticity. Glutamate is the major excitatory neurotransmitter that activates downstream targets, with a key role in learning and memory. However, an excess of glutamatergic stimulation is pathological in stroke, epilepsy and neurodegeneration, triggering excitotoxic cell death or a sublethal process of excitatory mitochondrial calcium toxicity (EMT) that triggers dendritic retraction. Markers of autophagy and mitophagy are often elevated following excitatory neuronal injuries, with the potential to influence cell death or neurodegenerative outcomes of these injuries. Interestingly, leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1), two kinases linked to autophagy, mitophagy and Parkinson disease, play important roles in regulating mitochondrial calcium handling, synaptic density and function, and maturation of dendritic spines. Mutations in LRRK2, PINK1, or proteins linked to Alzheimer's disease perturb mitochondrial calcium handling to sensitize neurons to excitatory injury. While autophagy and mitophagy can play both protective and harmful roles, studies in various excitotoxicity and stroke models often implicate autophagy in a pathogenic role. Understanding the role of autophagic degradation in regulating synaptic loss and cell death following excitatory neuronal injuries has important therapeutic implications for both acute and chronic neurological disorders.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27694127.2025.2464376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain and nervous system functions depend upon maintaining the integrity of synaptic structures over the lifetime. Autophagy, a key homeostatic quality control system, plays a central role not only in neuronal development and survival/cell death, but also in regulating synaptic activity and plasticity. Glutamate is the major excitatory neurotransmitter that activates downstream targets, with a key role in learning and memory. However, an excess of glutamatergic stimulation is pathological in stroke, epilepsy and neurodegeneration, triggering excitotoxic cell death or a sublethal process of excitatory mitochondrial calcium toxicity (EMT) that triggers dendritic retraction. Markers of autophagy and mitophagy are often elevated following excitatory neuronal injuries, with the potential to influence cell death or neurodegenerative outcomes of these injuries. Interestingly, leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1), two kinases linked to autophagy, mitophagy and Parkinson disease, play important roles in regulating mitochondrial calcium handling, synaptic density and function, and maturation of dendritic spines. Mutations in LRRK2, PINK1, or proteins linked to Alzheimer's disease perturb mitochondrial calcium handling to sensitize neurons to excitatory injury. While autophagy and mitophagy can play both protective and harmful roles, studies in various excitotoxicity and stroke models often implicate autophagy in a pathogenic role. Understanding the role of autophagic degradation in regulating synaptic loss and cell death following excitatory neuronal injuries has important therapeutic implications for both acute and chronic neurological disorders.

自噬在兴奋毒性、突触线粒体应激和神经退行性变中的作用
大脑和神经系统的功能依赖于突触结构在一生中保持完整。自噬是一种重要的稳态质量控制系统,不仅在神经元发育和细胞存活/死亡中起着重要作用,而且在调节突触活性和可塑性方面也起着重要作用。谷氨酸是激活下游目标的主要兴奋性神经递质,在学习和记忆中起关键作用。然而,过量的谷氨酸能刺激在中风、癫痫和神经退行性变中是病理性的,会引发兴奋性毒性细胞死亡或触发树突回缩的兴奋性线粒体钙毒性(EMT)的亚致死过程。兴奋性神经元损伤后,自噬和有丝自噬的标志物通常升高,可能影响这些损伤的细胞死亡或神经退行性结局。有趣的是,富含亮氨酸的重复激酶2 (LRRK2)和pten诱导的激酶1 (PINK1)是两种与自噬、线粒体自噬和帕金森病相关的激酶,在调节线粒体钙处理、突触密度和功能以及树突棘成熟中发挥重要作用。LRRK2、PINK1或与阿尔茨海默病相关的蛋白质突变扰乱线粒体钙处理,使神经元对兴奋性损伤敏感。虽然自噬和有丝自噬既可以起到保护作用,也可以起到有害作用,但在各种兴奋性毒性和脑卒中模型中的研究往往暗示自噬具有致病作用。了解自噬降解在调节兴奋性神经元损伤后突触丧失和细胞死亡中的作用,对急性和慢性神经系统疾病的治疗具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信