{"title":"Simultaneous Object and Category Score Estimation in Joint Correspondence Analysis.","authors":"Naomichi Makino","doi":"10.1017/psy.2025.12","DOIUrl":null,"url":null,"abstract":"<p><p>Joint correspondence analysis (JCA) is a statistical method for obtaining a low-dimensional representation of multivariate categorical data. It was developed as an alternative to multiple correspondence analysis (MCA). Typically, the solution is visualized through a map that projects the data onto a reduced space. A joint map, which shows both object and category scores in the same space, helps users explore inter- and intra-relationships in objects and categories. However, unlike MCA, current JCA estimation methods do not allow the joint representation of objects and categories on the map, which limits the interpretability of JCA results. To overcome this limitation, we propose a simultaneous object and category score estimation method for JCA while addressing the underestimated variance problem that is inherent in MCA. In the proposed method, JCA parameters are estimated by minimizing the discrepancy between the observed categorical data and the JCA data model, rather than relying on the JCA covariance model used in existing estimation methods. Previous research has shown that JCA is comparable to exploratory factor analysis. We also address the factor-analytic interpretation of JCA solutions in addition to geometric interpretation. Two real data analysis examples are also presented to demonstrate the geometric and factor-analytic interpretations of the JCA solutions.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-16"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.12","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Joint correspondence analysis (JCA) is a statistical method for obtaining a low-dimensional representation of multivariate categorical data. It was developed as an alternative to multiple correspondence analysis (MCA). Typically, the solution is visualized through a map that projects the data onto a reduced space. A joint map, which shows both object and category scores in the same space, helps users explore inter- and intra-relationships in objects and categories. However, unlike MCA, current JCA estimation methods do not allow the joint representation of objects and categories on the map, which limits the interpretability of JCA results. To overcome this limitation, we propose a simultaneous object and category score estimation method for JCA while addressing the underestimated variance problem that is inherent in MCA. In the proposed method, JCA parameters are estimated by minimizing the discrepancy between the observed categorical data and the JCA data model, rather than relying on the JCA covariance model used in existing estimation methods. Previous research has shown that JCA is comparable to exploratory factor analysis. We also address the factor-analytic interpretation of JCA solutions in addition to geometric interpretation. Two real data analysis examples are also presented to demonstrate the geometric and factor-analytic interpretations of the JCA solutions.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.