Generation of kidney organoids derived from human expanded potential stem cells.

IF 2.1 4区 生物学 Q3 DEVELOPMENTAL BIOLOGY
Zhanpeng Kuang, Changmiao Pang, Haiyan Wang, Xiaocui Wei, Xianhua Ye, Xuefei Gao, Liangzhong Sun
{"title":"Generation of kidney organoids derived from human expanded potential stem cells.","authors":"Zhanpeng Kuang, Changmiao Pang, Haiyan Wang, Xiaocui Wei, Xianhua Ye, Xuefei Gao, Liangzhong Sun","doi":"10.1016/j.cdev.2025.204025","DOIUrl":null,"url":null,"abstract":"<p><p>The establishment of human expanded potential stem cell (hEPSC) presents a unique cellular platform for translational research in kidney organoids. We generated SIX2 reporter and doxycycline (DOX)-inducible YAP overexpression in hEPSC lines using CRISPR-Cas9. Chemical compounds and DOX were added to the culture medium to induce Hippo-YAP signaling, respectively. The hEPSC line containing the SIX2-mCherry reporter gene accurately reflected SIX2 expression in vitro, enabling the real-time tracking of kidney organoid development. A comparative analysis revealed that inhibiting the Hippo-YAP signaling pathway before nephron progenitor cell (NPC) generation effectively increased the number of NPCs, resulting in a more nephron-like structure. However, prolonged inhibition hindered the further maturation of the kidney organoids, leading to differentiation stagnation. Therefore, activating YAP before NPC generation facilitates their maturation, offering effective induction strategies improving kidney organoid differentiation efficiency.</p>","PeriodicalId":29860,"journal":{"name":"Cells & Development","volume":" ","pages":"204025"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells & Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cdev.2025.204025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The establishment of human expanded potential stem cell (hEPSC) presents a unique cellular platform for translational research in kidney organoids. We generated SIX2 reporter and doxycycline (DOX)-inducible YAP overexpression in hEPSC lines using CRISPR-Cas9. Chemical compounds and DOX were added to the culture medium to induce Hippo-YAP signaling, respectively. The hEPSC line containing the SIX2-mCherry reporter gene accurately reflected SIX2 expression in vitro, enabling the real-time tracking of kidney organoid development. A comparative analysis revealed that inhibiting the Hippo-YAP signaling pathway before nephron progenitor cell (NPC) generation effectively increased the number of NPCs, resulting in a more nephron-like structure. However, prolonged inhibition hindered the further maturation of the kidney organoids, leading to differentiation stagnation. Therefore, activating YAP before NPC generation facilitates their maturation, offering effective induction strategies improving kidney organoid differentiation efficiency.

从人类扩增潜能干细胞中生成肾脏器官组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells & Development
Cells & Development DEVELOPMENTAL BIOLOGY-
CiteScore
3.70
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信