Cytoduction Preserves Genetic Diversity Following Plasmid Transfer Into Pooled Yeast Libraries.

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yeast Pub Date : 2025-04-07 DOI:10.1002/yea.4001
Han-Ying Jhuang, Dimitra Aggeli, Gregory I Lang
{"title":"Cytoduction Preserves Genetic Diversity Following Plasmid Transfer Into Pooled Yeast Libraries.","authors":"Han-Ying Jhuang, Dimitra Aggeli, Gregory I Lang","doi":"10.1002/yea.4001","DOIUrl":null,"url":null,"abstract":"<p><p>Introducing plasmids into yeast is a critical step for many phenotypic assays and genetic engineering applications. However, it is often challenging for applications that involve large pools of variants because the population structure can be easily altered by traditional methods such as chemical transformation. In this study, we introduce drug-marked plasmids into a heterogeneous yeast population using both transformation and cytoduction (mating without nuclear fusion). Using a highly diverse barcoded yeast collection, we quantify the efficiency of both methods. We demonstrate that for cytoduction, but not transformation, nearly all the genotypes in the initial pool were detected in the final pool, with a high correlation to their initial frequencies. Finally, we map QTL that impact both cytoduction and transformation. Overall, we demonstrate the efficiency of cytoduction as a means of introducing plasmids into yeast. This is significant because it provides a means of manipulating diverse yeast populations, such as pools constructed for bulk segregant analysis, deep mutational scanning, large-scale gene editing, or populations from long-term evolution experiments.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.4001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introducing plasmids into yeast is a critical step for many phenotypic assays and genetic engineering applications. However, it is often challenging for applications that involve large pools of variants because the population structure can be easily altered by traditional methods such as chemical transformation. In this study, we introduce drug-marked plasmids into a heterogeneous yeast population using both transformation and cytoduction (mating without nuclear fusion). Using a highly diverse barcoded yeast collection, we quantify the efficiency of both methods. We demonstrate that for cytoduction, but not transformation, nearly all the genotypes in the initial pool were detected in the final pool, with a high correlation to their initial frequencies. Finally, we map QTL that impact both cytoduction and transformation. Overall, we demonstrate the efficiency of cytoduction as a means of introducing plasmids into yeast. This is significant because it provides a means of manipulating diverse yeast populations, such as pools constructed for bulk segregant analysis, deep mutational scanning, large-scale gene editing, or populations from long-term evolution experiments.

质粒转入酵母文库后,细胞传导保留了遗传多样性。
将质粒导入酵母是许多表型分析和基因工程应用的关键步骤。然而,对于涉及大量变体的应用来说,这通常是具有挑战性的,因为种群结构可以很容易地通过化学转化等传统方法改变。在这项研究中,我们将药物标记的质粒引入异种酵母群体,使用转化和细胞传导(不进行核聚变交配)。使用高度多样化的条形码酵母收集,我们量化两种方法的效率。我们证明,对于细胞传导,而不是转化,几乎所有初始池中的基因型都在最终池中被检测到,与它们的初始频率高度相关。最后,我们绘制了影响细胞生产和转化的QTL。总的来说,我们证明了细胞诱导作为一种将质粒引入酵母的手段的效率。这是很重要的,因为它提供了一种操纵不同酵母种群的手段,例如用于批量分离分析、深度突变扫描、大规模基因编辑或长期进化实验的种群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信