{"title":"AI in SPECT Imaging: Opportunities and Challenges.","authors":"Fan Yang, Bowen Lei, Ziyuan Zhou, Tzu-An Song, Vibha Balaji, Joyita Dutta","doi":"10.1053/j.semnuclmed.2025.03.005","DOIUrl":null,"url":null,"abstract":"<p><p>SPECT is a widely used imaging modality in nuclear medicine which provides essential functional insights into cardiovascular, neurological, and oncological diseases. However, SPECT imaging suffers from limited quantitative accuracy due to low spatial resolution and high noise levels, posing significant challenges for precise diagnosis, disease monitoring, and treatment planning. Recent advances in artificial intelligence (AI), in particular deep learning-based techniques such as convolutional neural networks (CNNs), generative adversarial networks (GANs), and transformers, have led to substantial improvements in SPECT image reconstruction, enhancement, attenuation correction, segmentation, disease classification, and multimodal fusion. These AI approaches have enabled more accurate extraction of functional and anatomical information, improved quantitative analysis, and facilitated the integration of SPECT with other imaging modalities to enhance clinical decision-making. This review provides a comprehensive overview of AI-driven developments in SPECT imaging, highlighting progress in both supervised and unsupervised learning approaches, innovations in image synthesis and cross-modality learning, and the potential of self-supervised and contrastive learning strategies for improving model robustness. Additionally, we discuss key challenges, including data heterogeneity, model interpretability, and computational complexity, which continue to limit the clinical adoption of AI methods. The need for standardized evaluation metrics, large-scale multimodal datasets, and clinically validated AI models remains a crucial factor in ensuring the reliability and generalizability of AI approaches. Future research directions include the exploration of foundation models and large language models for knowledge-driven image analysis, as well as the development of more adaptive and personalized AI frameworks tailored for nuclear imaging applications.</p>","PeriodicalId":21643,"journal":{"name":"Seminars in nuclear medicine","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in nuclear medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1053/j.semnuclmed.2025.03.005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
SPECT is a widely used imaging modality in nuclear medicine which provides essential functional insights into cardiovascular, neurological, and oncological diseases. However, SPECT imaging suffers from limited quantitative accuracy due to low spatial resolution and high noise levels, posing significant challenges for precise diagnosis, disease monitoring, and treatment planning. Recent advances in artificial intelligence (AI), in particular deep learning-based techniques such as convolutional neural networks (CNNs), generative adversarial networks (GANs), and transformers, have led to substantial improvements in SPECT image reconstruction, enhancement, attenuation correction, segmentation, disease classification, and multimodal fusion. These AI approaches have enabled more accurate extraction of functional and anatomical information, improved quantitative analysis, and facilitated the integration of SPECT with other imaging modalities to enhance clinical decision-making. This review provides a comprehensive overview of AI-driven developments in SPECT imaging, highlighting progress in both supervised and unsupervised learning approaches, innovations in image synthesis and cross-modality learning, and the potential of self-supervised and contrastive learning strategies for improving model robustness. Additionally, we discuss key challenges, including data heterogeneity, model interpretability, and computational complexity, which continue to limit the clinical adoption of AI methods. The need for standardized evaluation metrics, large-scale multimodal datasets, and clinically validated AI models remains a crucial factor in ensuring the reliability and generalizability of AI approaches. Future research directions include the exploration of foundation models and large language models for knowledge-driven image analysis, as well as the development of more adaptive and personalized AI frameworks tailored for nuclear imaging applications.
期刊介绍:
Seminars in Nuclear Medicine is the leading review journal in nuclear medicine. Each issue brings you expert reviews and commentary on a single topic as selected by the Editors. The journal contains extensive coverage of the field of nuclear medicine, including PET, SPECT, and other molecular imaging studies, and related imaging studies. Full-color illustrations are used throughout to highlight important findings. Seminars is included in PubMed/Medline, Thomson/ISI, and other major scientific indexes.