Mian Peng, Qiang Wei, Jiale Yuan, Da-Wei Wang, Mou Yan, Han Cai, Gang Chen
{"title":"Ideal Flat and Resolved SU(3) Landau Levels in Three Dimensions.","authors":"Mian Peng, Qiang Wei, Jiale Yuan, Da-Wei Wang, Mou Yan, Han Cai, Gang Chen","doi":"10.1103/PhysRevLett.134.116601","DOIUrl":null,"url":null,"abstract":"<p><p>Landau levels (LLs) are of great importance for understanding the quantum Hall effect and associated many-body physics. Recently, their three-dimensional (3D) counterparts, i.e., dispersionless 3D LLs with well-defined quantum numbers, have attracted significant attention but have not yet been reported. Here we theoretically propose and experimentally observe 3D LLs with a sharply quantized spectrum in a diamond acoustic lattice, where the eigenstates are characterized by SU(3) quantum numbers. The engineered inhomogeneous hopping strengths not only introduce pseudomagnetic fields that quantize the nodal lines into LLs but also provide three bosonic degrees of freedom, embedding a generic SU(3) symmetry into the LLs. Using a phased array of acoustic sources, we selectively excite distinct eigenstates within the degenerate LL multiplets and visualize their 3D eigenmodes. Importantly, our approach enables the precise reconstruction of SU(3) quantum numbers directly from eigenmode correlations. Our results establish SU(3) LLs as a tractable model in artificial platforms, and pave the way for synthesizing LLs with zero dispersion and countable quantum numbers in arbitrary dimensions.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 11","pages":"116601"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.116601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Landau levels (LLs) are of great importance for understanding the quantum Hall effect and associated many-body physics. Recently, their three-dimensional (3D) counterparts, i.e., dispersionless 3D LLs with well-defined quantum numbers, have attracted significant attention but have not yet been reported. Here we theoretically propose and experimentally observe 3D LLs with a sharply quantized spectrum in a diamond acoustic lattice, where the eigenstates are characterized by SU(3) quantum numbers. The engineered inhomogeneous hopping strengths not only introduce pseudomagnetic fields that quantize the nodal lines into LLs but also provide three bosonic degrees of freedom, embedding a generic SU(3) symmetry into the LLs. Using a phased array of acoustic sources, we selectively excite distinct eigenstates within the degenerate LL multiplets and visualize their 3D eigenmodes. Importantly, our approach enables the precise reconstruction of SU(3) quantum numbers directly from eigenmode correlations. Our results establish SU(3) LLs as a tractable model in artificial platforms, and pave the way for synthesizing LLs with zero dispersion and countable quantum numbers in arbitrary dimensions.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks