Zhijing Niu, Vera M Schäfer, Haoqing Zhang, Cameron Wagner, Nathan R Taylor, Dylan J Young, Eric Yilun Song, Anjun Chu, Ana Maria Rey, James K Thompson
{"title":"Many-Body Gap Protection against Motional Dephasing of an Optical Clock Transition.","authors":"Zhijing Niu, Vera M Schäfer, Haoqing Zhang, Cameron Wagner, Nathan R Taylor, Dylan J Young, Eric Yilun Song, Anjun Chu, Ana Maria Rey, James K Thompson","doi":"10.1103/PhysRevLett.134.113403","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum simulation and metrology with atoms, ions, and molecules often rely on using light fields to manipulate their internal states. The absorbed momentum from the light fields can induce spin-orbit coupling and associated motional-induced (Doppler) dephasing, which may limit the coherence time available for metrology and simulation. We experimentally demonstrate the suppression of Doppler dephasing on a strontium optical clock transition by enabling atomic interactions through a shared mode in a high-finesse optical ring cavity. The interactions create a many-body energy gap that increases with atom number, suppressing motional dephasing when it surpasses the dephasing energy scale. This collective approach offers an alternative to traditional methods, like Lamb-Dicke confinement or Mössbauer spectroscopy, for advancing optical quantum sensors and simulations.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 11","pages":"113403"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.113403","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum simulation and metrology with atoms, ions, and molecules often rely on using light fields to manipulate their internal states. The absorbed momentum from the light fields can induce spin-orbit coupling and associated motional-induced (Doppler) dephasing, which may limit the coherence time available for metrology and simulation. We experimentally demonstrate the suppression of Doppler dephasing on a strontium optical clock transition by enabling atomic interactions through a shared mode in a high-finesse optical ring cavity. The interactions create a many-body energy gap that increases with atom number, suppressing motional dephasing when it surpasses the dephasing energy scale. This collective approach offers an alternative to traditional methods, like Lamb-Dicke confinement or Mössbauer spectroscopy, for advancing optical quantum sensors and simulations.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks