{"title":"Evolutionary Advantage of Cell Size Control.","authors":"Spencer Hobson-Gutierrez, Edo Kussell","doi":"10.1103/PhysRevLett.134.118401","DOIUrl":null,"url":null,"abstract":"<p><p>We analyze the advantage of cell size control strategies in growing populations under mortality constraints and show that growth-dependent mortality can select for accurate size control. We determine how mortality, noise, and nongenetic heritability of cell size impact long-term population growth. We derive an analytical expression for the optimal cell size. We demonstrate that size heritability enables selection to act on the distribution of cell sizes in a population to avoid viability thresholds and adapt to size- and growth-dependent mortality landscapes.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 11","pages":"118401"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.118401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the advantage of cell size control strategies in growing populations under mortality constraints and show that growth-dependent mortality can select for accurate size control. We determine how mortality, noise, and nongenetic heritability of cell size impact long-term population growth. We derive an analytical expression for the optimal cell size. We demonstrate that size heritability enables selection to act on the distribution of cell sizes in a population to avoid viability thresholds and adapt to size- and growth-dependent mortality landscapes.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks