Electroacupuncture Promotes the Proliferation and Differentiation of Enteric Neural Precursor Cells via the PTEN/PI3K/Akt/mTOR Signaling Pathway in Diabetic Mice.
{"title":"Electroacupuncture Promotes the Proliferation and Differentiation of Enteric Neural Precursor Cells via the PTEN/PI3K/Akt/mTOR Signaling Pathway in Diabetic Mice.","authors":"Jinlu Guo, Xin Yang, Jingze Yang, Fan Du, Shi Liu","doi":"10.1111/nmo.70040","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Enteric neuronal loss significantly contributes to gastrointestinal (GI) motility disorders. Electroacupuncture (EA) can promote the regeneration of lost enteric neurons in diabetic mice, but its mechanisms are not fully understood. Nestin<sup>+</sup>/Ngfr<sup>+</sup> cells can function as enteric neural precursor cells (ENPCs) to proliferate and differentiate into enteric neurons in adult mice. However, EA's effects on ENPCs remain unknown. The study aimed to investigate whether EA reversed enteric neuronal loss via regulation of ENPCs and its molecular basis.</p><p><strong>Materials and methods: </strong>The study utilized conventional C57BL/6J mice and ENPC-tracing transgenic mice. Streptozotocin-induced type 1 diabetic mouse, PI3K inhibitor, and PTEN inhibitor models were used. GI motility was evaluated by defecation frequency, fecal water content, and whole gut transit test. The alterations of enteric neurons, ENPCs, and PTEN/PI3K/Akt/mTOR signaling were detected by Western blot and immunofluorescence.</p><p><strong>Results: </strong>EA increased defecation frequency and fecal water content, reduced whole gut transit time, and increased the number of enteric neurons. Notably, EA inhibited ENPC apoptosis and facilitated ENPC proliferation and differentiation with a preferential into ChAT enteric neurons. Additionally, PTEN was decreased and PI3K/Akt/mTOR signaling was activated with EA. However, LY294002 (PI3K inhibitor) inhibited EA's effects on ENPCs, while BpV(HOpic) (PTEN inhibitor) partially rescued these inhibitory effects.</p><p><strong>Conclusions: </strong>EA alleviates diabetic enteric neuropathy by regulating ENPC dynamics through the PTEN/PI3K/Akt/mTOR signaling pathway. Notably, EA-mediated anti-apoptotic and pro-proliferative effects on ENPCs, and their preferential cholinergic differentiation establish EA as a multimodal therapy that bridges neuromodulation with precursor cell biology, offering an alternative strategy for GI motility disorders.</p>","PeriodicalId":19123,"journal":{"name":"Neurogastroenterology and Motility","volume":" ","pages":"e70040"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogastroenterology and Motility","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/nmo.70040","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Enteric neuronal loss significantly contributes to gastrointestinal (GI) motility disorders. Electroacupuncture (EA) can promote the regeneration of lost enteric neurons in diabetic mice, but its mechanisms are not fully understood. Nestin+/Ngfr+ cells can function as enteric neural precursor cells (ENPCs) to proliferate and differentiate into enteric neurons in adult mice. However, EA's effects on ENPCs remain unknown. The study aimed to investigate whether EA reversed enteric neuronal loss via regulation of ENPCs and its molecular basis.
Materials and methods: The study utilized conventional C57BL/6J mice and ENPC-tracing transgenic mice. Streptozotocin-induced type 1 diabetic mouse, PI3K inhibitor, and PTEN inhibitor models were used. GI motility was evaluated by defecation frequency, fecal water content, and whole gut transit test. The alterations of enteric neurons, ENPCs, and PTEN/PI3K/Akt/mTOR signaling were detected by Western blot and immunofluorescence.
Results: EA increased defecation frequency and fecal water content, reduced whole gut transit time, and increased the number of enteric neurons. Notably, EA inhibited ENPC apoptosis and facilitated ENPC proliferation and differentiation with a preferential into ChAT enteric neurons. Additionally, PTEN was decreased and PI3K/Akt/mTOR signaling was activated with EA. However, LY294002 (PI3K inhibitor) inhibited EA's effects on ENPCs, while BpV(HOpic) (PTEN inhibitor) partially rescued these inhibitory effects.
Conclusions: EA alleviates diabetic enteric neuropathy by regulating ENPC dynamics through the PTEN/PI3K/Akt/mTOR signaling pathway. Notably, EA-mediated anti-apoptotic and pro-proliferative effects on ENPCs, and their preferential cholinergic differentiation establish EA as a multimodal therapy that bridges neuromodulation with precursor cell biology, offering an alternative strategy for GI motility disorders.
期刊介绍:
Neurogastroenterology & Motility (NMO) is the official Journal of the European Society of Neurogastroenterology & Motility (ESNM) and the American Neurogastroenterology and Motility Society (ANMS). It is edited by James Galligan, Albert Bredenoord, and Stephen Vanner. The editorial and peer review process is independent of the societies affiliated to the journal and publisher: Neither the ANMS, the ESNM or the Publisher have editorial decision-making power. Whenever these are relevant to the content being considered or published, the editors, journal management committee and editorial board declare their interests and affiliations.