The Role and Mechanism of TRIM13 Regulation of TRAF6 Ubiquitination in the Synergy of Inflammatory Responses and Neurotoxicity Induced by METH and HIV- 1 Tat Protein in Astrocytes.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Yi Tan, Lin Miao, Chan Wang, Haowei Wang, Yi Li, Yizhen Huang, Hanxin Teng, Yunqing Tian, Genmeng Yang, Xiaofeng Zeng, Juan Li
{"title":"The Role and Mechanism of TRIM13 Regulation of TRAF6 Ubiquitination in the Synergy of Inflammatory Responses and Neurotoxicity Induced by METH and HIV- 1 Tat Protein in Astrocytes.","authors":"Yi Tan, Lin Miao, Chan Wang, Haowei Wang, Yi Li, Yizhen Huang, Hanxin Teng, Yunqing Tian, Genmeng Yang, Xiaofeng Zeng, Juan Li","doi":"10.1007/s12640-025-00743-5","DOIUrl":null,"url":null,"abstract":"<p><p>Methamphetamine (METH) abuse and HIV infection are major public health concerns worldwide. While both METH and HIV- 1 Tat proteins can induce neurotoxicity and synergistic effects on the nervous system, the mechanisms by which they act synergistically remain unclear. Our recent research shows that neuroinflammation plays an important role in neurotoxicity induced by METH and HIV- 1 Tat proteins, but the regulatory mechanism has not been clarified. Tripartite Motif Containing 13 (TRIM13) is a protein known to regulate the inflammatory response through ubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6). This study investigated the role of TRIM13 and TRAF6 in the inflammatory response of U- 87 MG cells induced by METH and HIV- 1 Tat proteins. U- 87 MG cells were treated with 2 mM METH and/or 100 nM HIV- 1 Tat protein. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments were employed to elucidate the role of TRIM13 and TRAF6. The results demonstrated that METH and HIV- 1 Tat protein could synergistically induce an inflammatory response in U- 87 MG cells. Furthermore, the knockdown of TRIM13 significantly enhanced this inflammatory response, while the inhibition of TRAF6 significantly weakened it. Additionally, the study revealed that TRIM13 could degrade TRAF6 via ubiquitination. In conclusion, this study suggests that TRIM13 regulates TRAF6 ubiquitination to dampen the inflammatory response of U- 87 MG cells induced by METH and HIV- 1 Tat proteins. These findings highlight TRIM13 and TRAF6 as potential targets for therapeutic intervention in the context of METH and HIV- 1 Tat protein-induced inflammatory responses and neurotoxic effects.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"43 2","pages":"21"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-025-00743-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methamphetamine (METH) abuse and HIV infection are major public health concerns worldwide. While both METH and HIV- 1 Tat proteins can induce neurotoxicity and synergistic effects on the nervous system, the mechanisms by which they act synergistically remain unclear. Our recent research shows that neuroinflammation plays an important role in neurotoxicity induced by METH and HIV- 1 Tat proteins, but the regulatory mechanism has not been clarified. Tripartite Motif Containing 13 (TRIM13) is a protein known to regulate the inflammatory response through ubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6). This study investigated the role of TRIM13 and TRAF6 in the inflammatory response of U- 87 MG cells induced by METH and HIV- 1 Tat proteins. U- 87 MG cells were treated with 2 mM METH and/or 100 nM HIV- 1 Tat protein. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments were employed to elucidate the role of TRIM13 and TRAF6. The results demonstrated that METH and HIV- 1 Tat protein could synergistically induce an inflammatory response in U- 87 MG cells. Furthermore, the knockdown of TRIM13 significantly enhanced this inflammatory response, while the inhibition of TRAF6 significantly weakened it. Additionally, the study revealed that TRIM13 could degrade TRAF6 via ubiquitination. In conclusion, this study suggests that TRIM13 regulates TRAF6 ubiquitination to dampen the inflammatory response of U- 87 MG cells induced by METH and HIV- 1 Tat proteins. These findings highlight TRIM13 and TRAF6 as potential targets for therapeutic intervention in the context of METH and HIV- 1 Tat protein-induced inflammatory responses and neurotoxic effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信