Self-Trapping Phenomenon, Multistability and Chaos in Open Anisotropic Dicke Dimer.

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
G Vivek, Debabrata Mondal, Subhadeep Chakraborty, S Sinha
{"title":"Self-Trapping Phenomenon, Multistability and Chaos in Open Anisotropic Dicke Dimer.","authors":"G Vivek, Debabrata Mondal, Subhadeep Chakraborty, S Sinha","doi":"10.1103/PhysRevLett.134.113404","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate semiclassical dynamics of a coupled atom-photon interacting system described by a dimer of anisotropic Dicke model in the presence of photon loss, exhibiting a rich variety of nonlinear dynamics. Based on symmetries and dynamical classification, we characterize and chart out various dynamical phases in a phase diagram. A key feature of this system is the multistability of different dynamical states, particularly the coexistence of various superradiant phases as well as limit cycles. Remarkably, this dimer system manifests self-trapping phenomena, resulting in a photon population imbalance between the cavities. Such a self-trapped state arises from a saddle-node bifurcation, which can be understood from an equivalent Landau-Ginzburg description. Additionally, we identify a unique class of oscillatory dynamics, \"self-trapped limit cycle,\" hosting self-trapping of photons. The absence of stable dynamical phases leads to the onset of chaos, which is diagnosed using the saturation value of the decorrelator dynamics. Moreover, the self-trapped states can coexist with chaotic attractor, which may have intriguing consequences in quantum dynamics. Finally, we discuss the experimental relevance of our findings, which can be tested in cavity and circuit quantum electrodynamics setups.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 11","pages":"113404"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.113404","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate semiclassical dynamics of a coupled atom-photon interacting system described by a dimer of anisotropic Dicke model in the presence of photon loss, exhibiting a rich variety of nonlinear dynamics. Based on symmetries and dynamical classification, we characterize and chart out various dynamical phases in a phase diagram. A key feature of this system is the multistability of different dynamical states, particularly the coexistence of various superradiant phases as well as limit cycles. Remarkably, this dimer system manifests self-trapping phenomena, resulting in a photon population imbalance between the cavities. Such a self-trapped state arises from a saddle-node bifurcation, which can be understood from an equivalent Landau-Ginzburg description. Additionally, we identify a unique class of oscillatory dynamics, "self-trapped limit cycle," hosting self-trapping of photons. The absence of stable dynamical phases leads to the onset of chaos, which is diagnosed using the saturation value of the decorrelator dynamics. Moreover, the self-trapped states can coexist with chaotic attractor, which may have intriguing consequences in quantum dynamics. Finally, we discuss the experimental relevance of our findings, which can be tested in cavity and circuit quantum electrodynamics setups.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信