Lulu Chen, Zhenfang Zhang, Maria R Simonsen, Trevor Owens, Reza M H Khorooshi, Changzhu Wu
{"title":"PEGylated liposomes via ATRP for brain drug delivery.","authors":"Lulu Chen, Zhenfang Zhang, Maria R Simonsen, Trevor Owens, Reza M H Khorooshi, Changzhu Wu","doi":"10.1080/08982104.2025.2485428","DOIUrl":null,"url":null,"abstract":"<p><p>PEGylated liposomes play a critical role in drug delivery systems because they can evade immune recognition. However, conventional methods for synthesizing PEGylated liposomes often involve the direct incorporation of PEG-functionalized lipids, resulting in insufficient and inconsistent PEG distribution on the liposome surface, which compromises their stability and performance. In this study, we present a proof-of-concept synthesis approach that utilizes lipid-based initiators to form liposomes, followed by controllable grafting of PEG chains through atom transfer radical polymerization (ATRP). This method ensures controlled and uniform PEG coverage, resulting in improved functionality. Compared to conventional liposomes, the polymer-grafted liposomes synthesized via ATRP demonstrated superior cellular uptake <i>in vitro</i>, enhanced penetration of the blood-brain barrier (BBB), and improved stability <i>in vivo</i>, particularly for protein-encapsulated formulations such as green fluorescent protein (GFP). Live/dead assays confirmed the biocompatibility of the ATRP-synthesized PEGylated liposomes. Therefore, our strategy significantly enhances the efficiency of PEGylated liposomes for targeted brain drug delivery, providing a promising platform for the treatment of neurological disorders.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"1-7"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2025.2485428","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PEGylated liposomes play a critical role in drug delivery systems because they can evade immune recognition. However, conventional methods for synthesizing PEGylated liposomes often involve the direct incorporation of PEG-functionalized lipids, resulting in insufficient and inconsistent PEG distribution on the liposome surface, which compromises their stability and performance. In this study, we present a proof-of-concept synthesis approach that utilizes lipid-based initiators to form liposomes, followed by controllable grafting of PEG chains through atom transfer radical polymerization (ATRP). This method ensures controlled and uniform PEG coverage, resulting in improved functionality. Compared to conventional liposomes, the polymer-grafted liposomes synthesized via ATRP demonstrated superior cellular uptake in vitro, enhanced penetration of the blood-brain barrier (BBB), and improved stability in vivo, particularly for protein-encapsulated formulations such as green fluorescent protein (GFP). Live/dead assays confirmed the biocompatibility of the ATRP-synthesized PEGylated liposomes. Therefore, our strategy significantly enhances the efficiency of PEGylated liposomes for targeted brain drug delivery, providing a promising platform for the treatment of neurological disorders.
期刊介绍:
The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society.
The scope of the Journal includes:
Formulation and characterisation of systems
Formulation engineering of systems
Synthetic and physical lipid chemistry
Lipid Biology
Biomembranes
Vaccines
Emerging technologies and systems related to liposomes and vesicle type systems
Developmental methodologies and new analytical techniques pertaining to the general area
Pharmacokinetics, pharmacodynamics and biodistribution of systems
Clinical applications.
The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.