Gap Analysis of Standard Automated Perimetry Concept Representation in Medical Terminologies.

IF 1.8 4区 医学 Q2 OPHTHALMOLOGY
Journal of Glaucoma Pub Date : 2025-08-01 Epub Date: 2025-04-08 DOI:10.1097/IJG.0000000000002575
Shahin Hallaj, William Halfpenny, Niloofar Radgoudarzi, Michael V Boland, Swarup S Swaminathan, Sophia Y Wang, Benjamin Y Xu, Dilru C Amarasekera, Brian Stagg, Aiyin Chen, Michelle Hribar, Kaveri A Thakoor, Kerry E Goetz, Jonathan S Myers, Aaron Y Lee, Mark A Christopher, Linda M Zangwill, Robert N Weinreb, Sally L Baxter
{"title":"Gap Analysis of Standard Automated Perimetry Concept Representation in Medical Terminologies.","authors":"Shahin Hallaj, William Halfpenny, Niloofar Radgoudarzi, Michael V Boland, Swarup S Swaminathan, Sophia Y Wang, Benjamin Y Xu, Dilru C Amarasekera, Brian Stagg, Aiyin Chen, Michelle Hribar, Kaveri A Thakoor, Kerry E Goetz, Jonathan S Myers, Aaron Y Lee, Mark A Christopher, Linda M Zangwill, Robert N Weinreb, Sally L Baxter","doi":"10.1097/IJG.0000000000002575","DOIUrl":null,"url":null,"abstract":"<p><strong>Prcis: </strong>In this multi-institutional effort, we identified gaps in SAP data elements within medical terminologies. We proposed new concepts to LOINC to enhance SAP data standards and big data representation and improve interoperability across health care systems.</p><p><strong>Purpose: </strong>To identify gaps in the representation of Standard Automated Perimetry (SAP) data elements in Logical Observation Identifiers Names and Codes (LOINC) and the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) and propose solutions for those gaps.</p><p><strong>Methods: </strong>SAP source data elements and Digital Imaging and Communications in Medicine (DICOM) standard from 2 commonly used perimeter devices were extracted and compared against existing concepts in standardized terminologies using the OMOP CDM Athena browser and LOINC using the LOINC browser. Gap areas were identified and classified following conventions used by Health Level 7 Fast Healthcare Interoperability Resources and discussed within the OHDSI Eye Care and Vision Research Workgroup in iterative rounds aiming to address gaps. New codes were developed upon reaching a consensus and proposed for inclusion in LOINC.</p><p><strong>Results: </strong>Among 107 data elements extracted from the perimeters, 82% (n=88) of SAP data elements lacked representation. Of the 19 remaining elements, 2.8% (n=3) were wider, 1.9% (n=2) were narrower, and 13% (n=14) had equivalent representation. In addition, only 2.6% (n=3) of the 116 DICOM attributes related to SAP had representation in standardized terminologies. Several existing relevant codes were defined ambiguously or erroneously (eg, visual field index, pupil diameter, perimeter format Kowa).</p><p><strong>Conclusion: </strong>There is a lack of representation of some SAP data elements in standardized medical terminologies, hampering interoperability and data sharing. We identified gaps and proposed new concepts for addition to LOINC, aiming to improve SAP data standards and interoperability.</p>","PeriodicalId":15938,"journal":{"name":"Journal of Glaucoma","volume":" ","pages":"644-649"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaucoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/IJG.0000000000002575","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prcis: In this multi-institutional effort, we identified gaps in SAP data elements within medical terminologies. We proposed new concepts to LOINC to enhance SAP data standards and big data representation and improve interoperability across health care systems.

Purpose: To identify gaps in the representation of Standard Automated Perimetry (SAP) data elements in Logical Observation Identifiers Names and Codes (LOINC) and the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) and propose solutions for those gaps.

Methods: SAP source data elements and Digital Imaging and Communications in Medicine (DICOM) standard from 2 commonly used perimeter devices were extracted and compared against existing concepts in standardized terminologies using the OMOP CDM Athena browser and LOINC using the LOINC browser. Gap areas were identified and classified following conventions used by Health Level 7 Fast Healthcare Interoperability Resources and discussed within the OHDSI Eye Care and Vision Research Workgroup in iterative rounds aiming to address gaps. New codes were developed upon reaching a consensus and proposed for inclusion in LOINC.

Results: Among 107 data elements extracted from the perimeters, 82% (n=88) of SAP data elements lacked representation. Of the 19 remaining elements, 2.8% (n=3) were wider, 1.9% (n=2) were narrower, and 13% (n=14) had equivalent representation. In addition, only 2.6% (n=3) of the 116 DICOM attributes related to SAP had representation in standardized terminologies. Several existing relevant codes were defined ambiguously or erroneously (eg, visual field index, pupil diameter, perimeter format Kowa).

Conclusion: There is a lack of representation of some SAP data elements in standardized medical terminologies, hampering interoperability and data sharing. We identified gaps and proposed new concepts for addition to LOINC, aiming to improve SAP data standards and interoperability.

医学术语中标准自动视界概念表示的差距分析。
前言:在这项多机构的工作中,我们确定了医疗术语中SAP数据元素的差距。我们向LOINC提出了新的概念,以增强SAP数据标准和大数据表示,并改善医疗保健系统之间的互操作性。目的:确定逻辑观察标识名称和代码(LOINC)和观察性医疗结果合作伙伴关系(OMOP)公共数据模型(CDM)中标准自动视距测量(SAP)数据元素表示的差距,并提出解决这些差距的方案。方法:利用OMOP CDM Athena浏览器和LOINC浏览器分别从两种常用周界设备中提取SAP源数据元素和医学数字成像与通信(DICOM)标准,并与标准化术语中的现有概念进行比较。根据Health Level 7快速医疗保健互操作性资源使用的惯例,确定和分类了差距区域,并在OHDSI眼保健和视力研究工作组内进行了反复讨论,旨在解决差距。在达成共识后,制定了新的守则,并建议将其纳入LOINC。结果:在从周界提取的107个数据元素中,82%(n=88)的SAP数据元素缺乏代表性。在剩下的19个元素中,2.8%(n=3)较宽,1.9%(n=2)较窄,13%(n=14)具有相同的代表性。此外,与SAP相关的116个DICOM属性中只有2.6%(n=3)在标准化术语中有表示。一些现有的相关代码定义含糊或错误(例如,视野指数,瞳孔直径,周长格式Kowa)。除了LOINC之外,还提出了与SAP DICOM标准密切一致的新代码。结论:一些SAP数据元素在标准化医学术语中缺乏表达,阻碍了数据的互操作性和共享。我们发现了差距,并提出了LOINC之外的新概念,旨在改进SAP数据标准和互操作性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Glaucoma
Journal of Glaucoma 医学-眼科学
CiteScore
4.20
自引率
10.00%
发文量
330
审稿时长
4-8 weeks
期刊介绍: The Journal of Glaucoma is a peer reviewed journal addressing the spectrum of issues affecting definition, diagnosis, and management of glaucoma and providing a forum for lively and stimulating discussion of clinical, scientific, and socioeconomic factors affecting care of glaucoma patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信