Skull CT metadata for automatic bone age assessment by using three-dimensional deep learning framework.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL
Meng Liu, Shuai Luo, Ting Lu, Ye Xue, Xian-E Tang, Wenchi Ke, Zi-Qi Cheng, Yushan Lin, Yuchi Zhou, Hu Chen, Zhenhua Deng
{"title":"Skull CT metadata for automatic bone age assessment by using three-dimensional deep learning framework.","authors":"Meng Liu, Shuai Luo, Ting Lu, Ye Xue, Xian-E Tang, Wenchi Ke, Zi-Qi Cheng, Yushan Lin, Yuchi Zhou, Hu Chen, Zhenhua Deng","doi":"10.1007/s00414-025-03469-3","DOIUrl":null,"url":null,"abstract":"<p><p>Bone age assessment (BAA) means challenging tasks in forensic science especially in some extreme situations like only skulls found. This study aimed to develop an accurate three-dimensional deep learning (DL) framework at skull CT metadata for BAA and try to explore new skull markers. In this study, retrospective data of 385,175 Skull CT slices from 1,085 patients ranging from 16.32 to 90.56 years were obtained. The cohort was randomly split into a training set (90%, N = 976) and a test set (10%, N = 109). Additional 101 patients were collected from another center as an external validation set. Evaluations and comparisons with other state-of-the-art DL models and traditional machine learning (ML) models based on hand-crafted methods were hierarchically performed. The mean absolute error (MAE) was the primary parameter. A total of 1186 patients (mean age ± SD: 54.72 ± 14.91, 603 males & 583 females) were evaluated. Our method achieved the best MAE on the training set, test set and external validation set were 6.51, 5.70, and 8.86 years in males, while in females, the best MAE were 6.10, 7.84, and 10.56 years, respectively. In the test set, the MAE of other 2D or 3D models and ML methods based on manual features were ranged from 10.12 to 14.12. The model results showed a tendency of larger errors in the elderly group. The results suggested the proposed three-dimensional DL framework performed better than existing DL and manual methods. Furthermore, our framework explored new skeletal markers for BAA and could serve as a backbone for extracting features from three-dimensional skull CT metadata in a professional manner.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-025-03469-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bone age assessment (BAA) means challenging tasks in forensic science especially in some extreme situations like only skulls found. This study aimed to develop an accurate three-dimensional deep learning (DL) framework at skull CT metadata for BAA and try to explore new skull markers. In this study, retrospective data of 385,175 Skull CT slices from 1,085 patients ranging from 16.32 to 90.56 years were obtained. The cohort was randomly split into a training set (90%, N = 976) and a test set (10%, N = 109). Additional 101 patients were collected from another center as an external validation set. Evaluations and comparisons with other state-of-the-art DL models and traditional machine learning (ML) models based on hand-crafted methods were hierarchically performed. The mean absolute error (MAE) was the primary parameter. A total of 1186 patients (mean age ± SD: 54.72 ± 14.91, 603 males & 583 females) were evaluated. Our method achieved the best MAE on the training set, test set and external validation set were 6.51, 5.70, and 8.86 years in males, while in females, the best MAE were 6.10, 7.84, and 10.56 years, respectively. In the test set, the MAE of other 2D or 3D models and ML methods based on manual features were ranged from 10.12 to 14.12. The model results showed a tendency of larger errors in the elderly group. The results suggested the proposed three-dimensional DL framework performed better than existing DL and manual methods. Furthermore, our framework explored new skeletal markers for BAA and could serve as a backbone for extracting features from three-dimensional skull CT metadata in a professional manner.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.50%
发文量
165
审稿时长
1 months
期刊介绍: The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信