Francesco Sovrano, Emmie Hine, Stefano Anzolut, Alberto Bacchelli
{"title":"Simplifying software compliance: AI technologies in drafting technical documentation for the AI Act.","authors":"Francesco Sovrano, Emmie Hine, Stefano Anzolut, Alberto Bacchelli","doi":"10.1007/s10664-025-10645-x","DOIUrl":null,"url":null,"abstract":"<p><p>The European AI Act has introduced specific technical documentation requirements for AI systems. Compliance with them is challenging due to the need for advanced knowledge of both legal and technical aspects, which is rare among software developers and legal professionals. Consequently, small and medium-sized enterprises may face high costs in meeting these requirements. In this study, we explore how contemporary AI technologies, including ChatGPT and an existing compliance tool (DoXpert), can aid software developers in creating technical documentation that complies with the AI Act. We specifically demonstrate how these AI tools can identify gaps in existing documentation according to the provisions of the AI Act. Using open-source high-risk AI systems as case studies, we collaborated with legal experts to evaluate how closely tool-generated assessments align with expert opinions. Findings show partial alignment, important issues with ChatGPT (3.5 and 4), and a moderate (and statistically significant) correlation between DoXpert and expert judgments, according to the Rank Biserial Correlation analysis. Nonetheless, these findings underscore the potential of AI to combine with human analysis and alleviate the compliance burden, supporting the broader goal of fostering responsible and transparent AI development under emerging regulatory frameworks.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"30 3","pages":"91"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-025-10645-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The European AI Act has introduced specific technical documentation requirements for AI systems. Compliance with them is challenging due to the need for advanced knowledge of both legal and technical aspects, which is rare among software developers and legal professionals. Consequently, small and medium-sized enterprises may face high costs in meeting these requirements. In this study, we explore how contemporary AI technologies, including ChatGPT and an existing compliance tool (DoXpert), can aid software developers in creating technical documentation that complies with the AI Act. We specifically demonstrate how these AI tools can identify gaps in existing documentation according to the provisions of the AI Act. Using open-source high-risk AI systems as case studies, we collaborated with legal experts to evaluate how closely tool-generated assessments align with expert opinions. Findings show partial alignment, important issues with ChatGPT (3.5 and 4), and a moderate (and statistically significant) correlation between DoXpert and expert judgments, according to the Rank Biserial Correlation analysis. Nonetheless, these findings underscore the potential of AI to combine with human analysis and alleviate the compliance burden, supporting the broader goal of fostering responsible and transparent AI development under emerging regulatory frameworks.
期刊介绍:
Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories.
The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings.
Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.