{"title":"Metformin inhibits subretinal fibrosis by activating Klotho by miR-126-5p.","authors":"Zhijuan Hua, Qin Zhu, Jingfei Yang, Yuxiang Zheng, Wenchang Yang, Dongli Li, Yixin Cui, Lu Shen, Lingna Rao, Xiaofan Zhang, Ling Yuan","doi":"10.1007/s10616-025-00744-4","DOIUrl":null,"url":null,"abstract":"<p><p>Subretinal fibrosis is a main cause of visual loss in patients with neovascular age-related macular degeneration (nAMD), for whom there has been a lack of effective medication. Metformin can improve inflammation and angiogenesis in eye diseases. This study aimed to investigate the mechanism by which metformin inhibits subretinal fibrosis. A subretinal fibrosis cell model was induced by treating human retinal pigment epithelial cells (ARPE-19) with TGF-β1, a subretinal fibrosis mouse model was induced by a laser, and both cells and mice were treated with metformin. Cell proliferation, migration, and invasion were detected by CCK-8, scratch, and Transwell assays. Western blotting and immunofluorescence were used to evaluate protein expression levels, and RT‒qPCR was used to detect gene expression levels. HE and Masson staining were used to observe the morphological changes in retinal and choroidal tissues. Metformin treatment inhibited the TGF-β1-induced proliferation, migration, invasion and epithelial‒mesenchymal transition (EMT) of ARPE-19 cells and effectively ameliorated laser-induced subretinal fibrosis in mice. Mechanistically, metformin inhibits the expression of miR-126-5p, promotes Klotho synthesis, slows the progression of subretinal fibrosis, and miR-126-5p targets and negatively regulates Klotho. Metformin activates Klotho by inhibiting miR-126-5p, thereby reversing TGF-β1-induced ARPE-19 cell EMT and improving laser-induced subretinal fibrosis in mice.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 3","pages":"84"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00744-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Subretinal fibrosis is a main cause of visual loss in patients with neovascular age-related macular degeneration (nAMD), for whom there has been a lack of effective medication. Metformin can improve inflammation and angiogenesis in eye diseases. This study aimed to investigate the mechanism by which metformin inhibits subretinal fibrosis. A subretinal fibrosis cell model was induced by treating human retinal pigment epithelial cells (ARPE-19) with TGF-β1, a subretinal fibrosis mouse model was induced by a laser, and both cells and mice were treated with metformin. Cell proliferation, migration, and invasion were detected by CCK-8, scratch, and Transwell assays. Western blotting and immunofluorescence were used to evaluate protein expression levels, and RT‒qPCR was used to detect gene expression levels. HE and Masson staining were used to observe the morphological changes in retinal and choroidal tissues. Metformin treatment inhibited the TGF-β1-induced proliferation, migration, invasion and epithelial‒mesenchymal transition (EMT) of ARPE-19 cells and effectively ameliorated laser-induced subretinal fibrosis in mice. Mechanistically, metformin inhibits the expression of miR-126-5p, promotes Klotho synthesis, slows the progression of subretinal fibrosis, and miR-126-5p targets and negatively regulates Klotho. Metformin activates Klotho by inhibiting miR-126-5p, thereby reversing TGF-β1-induced ARPE-19 cell EMT and improving laser-induced subretinal fibrosis in mice.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.