{"title":"Loureirin B analogs mitigate oxidative stress and confer renal protection","authors":"Haowen Fang , Xiaodong Sun , Yanting Ding , Bing Niu , Qin Chen","doi":"10.1016/j.cellsig.2025.111787","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic kidney disease (DKD) is a microvascular complication of diabetes with high morbidity and mortality, necessitating effective treatment. In this study, the Loureirin B analogue (LB-A) was utilized to treat DKD in mice. The results demonstrated that LB-A effectively prevent the progression of DKD in mice, significantly lowering fasting blood glucose levels and reducing proteinuria levels. Additionally, there was a significant decrease in oxidase content in the kidneys of mice, accompanied by an increase in antioxidant oxidase content, resulting in a decrease in ROS levels, mitigating oxidative stress state through modulation of Cxcl1. Cell experiments further confirmed that reducing Cxcl1/Cxcr2 axis activation prevented the onset of DKD induced by high glucose exposure and affected the therapeutic effect of LB-A as well. These findings provide evidences to support that LB-A may mitigate oxidative stress by modulating the Cxcl1 signaling pathway, thereby contributing to renal protection in the context of DKD treatment.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"132 ","pages":"Article 111787"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825002001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes with high morbidity and mortality, necessitating effective treatment. In this study, the Loureirin B analogue (LB-A) was utilized to treat DKD in mice. The results demonstrated that LB-A effectively prevent the progression of DKD in mice, significantly lowering fasting blood glucose levels and reducing proteinuria levels. Additionally, there was a significant decrease in oxidase content in the kidneys of mice, accompanied by an increase in antioxidant oxidase content, resulting in a decrease in ROS levels, mitigating oxidative stress state through modulation of Cxcl1. Cell experiments further confirmed that reducing Cxcl1/Cxcr2 axis activation prevented the onset of DKD induced by high glucose exposure and affected the therapeutic effect of LB-A as well. These findings provide evidences to support that LB-A may mitigate oxidative stress by modulating the Cxcl1 signaling pathway, thereby contributing to renal protection in the context of DKD treatment.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.