Takuya Azami, Bart Theeuwes, Mai-Linh Nu Ton, William Mansfield, Luke Harland, Masaki Kinoshita, Berthold Gottgens, Jennifer Nichols
{"title":"STAT3 signaling enhances tissue expansion during postimplantation mouse development.","authors":"Takuya Azami, Bart Theeuwes, Mai-Linh Nu Ton, William Mansfield, Luke Harland, Masaki Kinoshita, Berthold Gottgens, Jennifer Nichols","doi":"10.1016/j.celrep.2025.115506","DOIUrl":null,"url":null,"abstract":"<p><p>Signal transducer and activator of transcription (STAT)3 signaling has been studied extensively using mouse embryonic stem cells. Zygotic deletion of Stat3 enables embryo implantation, but thereafter, mutants resemble non-affected littermates from the previous day until around mid-gestation. This probably results from the loss of serine-phosphorylated STAT3, the predominant form in early postimplantation embryonic tissues associated with mitochondrial activity. Bulk RNA sequencing of isolated mouse epiblasts confirmed developmental delay transcriptionally. Single-cell RNA sequencing revealed the exclusion of derivatives of Stat3 null embryonic stem cells exclusively from the erythroid lineage of mid-gestation chimeras. We show that Stat3 null embryonic stem cells can differentiate into erythroid and hematopoietic lineages in vitro but become outcompeted when mixed with wild-type cells. Our results implicate a role for STAT3 in the temporal control of embryonic progression, particularly in tissues requiring rapid cell division, such as postimplantation epiblast and hematopoietic lineages. Interestingly, mutations in STAT3 are associated with short stature in humans.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115506"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115506","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Signal transducer and activator of transcription (STAT)3 signaling has been studied extensively using mouse embryonic stem cells. Zygotic deletion of Stat3 enables embryo implantation, but thereafter, mutants resemble non-affected littermates from the previous day until around mid-gestation. This probably results from the loss of serine-phosphorylated STAT3, the predominant form in early postimplantation embryonic tissues associated with mitochondrial activity. Bulk RNA sequencing of isolated mouse epiblasts confirmed developmental delay transcriptionally. Single-cell RNA sequencing revealed the exclusion of derivatives of Stat3 null embryonic stem cells exclusively from the erythroid lineage of mid-gestation chimeras. We show that Stat3 null embryonic stem cells can differentiate into erythroid and hematopoietic lineages in vitro but become outcompeted when mixed with wild-type cells. Our results implicate a role for STAT3 in the temporal control of embryonic progression, particularly in tissues requiring rapid cell division, such as postimplantation epiblast and hematopoietic lineages. Interestingly, mutations in STAT3 are associated with short stature in humans.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.