Margaret R Gaggioli, Angela G Jones, Ioanna Panagi, Erica J Washington, Rachel E Loney, Janina H Muench, Matthew W Foster, Richard G Brennan, Teresa L M Thurston, Dennis C Ko
{"title":"A single amino acid in the Salmonella effector SarA/SteE triggers supraphysiological activation of STAT3 for anti-inflammatory gene expression.","authors":"Margaret R Gaggioli, Angela G Jones, Ioanna Panagi, Erica J Washington, Rachel E Loney, Janina H Muench, Matthew W Foster, Richard G Brennan, Teresa L M Thurston, Dennis C Ko","doi":"10.1016/j.celrep.2025.115530","DOIUrl":null,"url":null,"abstract":"<p><p>Salmonella causes ∼1 million cases of gastroenteritis annually in the United States. Critical to virulence are secreted effectors that reprogram host functions. We previously discovered the effector SarA facilitates phosphorylation of STAT3, inducing expression of the anti-inflammatory cytokine interleukin-10 (IL-10). This STAT3 activation requires a region of homology with the host cytokine receptor gp130. Here, we demonstrate that a single amino acid difference is critical for the anti-inflammatory bias of SarA-STAT3 signaling. An isoleucine at pY+1 of the YxxQ motif in SarA (which binds the STAT3 SH2 domain) causes increased STAT3 recruitment and phosphorylation, biasing toward anti-inflammatory targets. This isoleucine renders SarA a better substrate for tyrosine phosphorylation by GSK-3. GSK-3 is canonically a serine/threonine kinase that nonetheless undergoes tyrosine autophosphorylation at a motif with isoleucine at the pY+1 position. Our results provide a molecular basis for how a Salmonella effector achieves supraphysiological levels of STAT3 activation to control host genes.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115530"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115530","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonella causes ∼1 million cases of gastroenteritis annually in the United States. Critical to virulence are secreted effectors that reprogram host functions. We previously discovered the effector SarA facilitates phosphorylation of STAT3, inducing expression of the anti-inflammatory cytokine interleukin-10 (IL-10). This STAT3 activation requires a region of homology with the host cytokine receptor gp130. Here, we demonstrate that a single amino acid difference is critical for the anti-inflammatory bias of SarA-STAT3 signaling. An isoleucine at pY+1 of the YxxQ motif in SarA (which binds the STAT3 SH2 domain) causes increased STAT3 recruitment and phosphorylation, biasing toward anti-inflammatory targets. This isoleucine renders SarA a better substrate for tyrosine phosphorylation by GSK-3. GSK-3 is canonically a serine/threonine kinase that nonetheless undergoes tyrosine autophosphorylation at a motif with isoleucine at the pY+1 position. Our results provide a molecular basis for how a Salmonella effector achieves supraphysiological levels of STAT3 activation to control host genes.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.