Prediction of Seronegative Hashimoto's thyroiditis using machine learning models based on ultrasound radiomics: a multicenter study.

IF 2.9 4区 医学 Q3 IMMUNOLOGY
Wenjun Wu, Shengsheng Yao, Daming Liu, Yuan Luo, Yihan Sun, Ting Ruan, Mengyou Liu, Li Shi, Chang Liu, Mingming Xiao, Qi Zhang, Zhengshuai Liu, Xingai Ju, Jiahao Wang, Xiang Fei, Li Lu, Yang Gao, Ying Zhang, Liying Gong, Xuanyu Chen, Wanli Zheng, Xiali Niu, Xiao Yang, Huimei Cao, Shijie Chang, Jianchun Cui, Zuoxin Ma
{"title":"Prediction of Seronegative Hashimoto's thyroiditis using machine learning models based on ultrasound radiomics: a multicenter study.","authors":"Wenjun Wu, Shengsheng Yao, Daming Liu, Yuan Luo, Yihan Sun, Ting Ruan, Mengyou Liu, Li Shi, Chang Liu, Mingming Xiao, Qi Zhang, Zhengshuai Liu, Xingai Ju, Jiahao Wang, Xiang Fei, Li Lu, Yang Gao, Ying Zhang, Liying Gong, Xuanyu Chen, Wanli Zheng, Xiali Niu, Xiao Yang, Huimei Cao, Shijie Chang, Jianchun Cui, Zuoxin Ma","doi":"10.1186/s12865-025-00708-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Seronegative Hashimoto's thyroiditis is often underdiagnosed due to the lack of antibody markers. Combining ultrasound radiomics with machine learning offers potential for early detection in patients with normal thyroid function.</p><p><strong>Methods: </strong>Data from 164 patients with single thyroid lesions and normal thyroid function, treated surgically between 2016 and 2024, were retrospectively collected from four hospitals. Radiomics features were extracted from ultrasound images of non-tumorous hypoechoic areas. Pathological lymphocytic infiltration and hypoechoic ratios were evaluated by senior pathologists and ultrasound physicians. A machine learning model, CCH-NET, was developed using a random forest classifier after feature selection with Least Absolute Shrinkage and Selection Operator (LASSO) regression. The model was trained and tested with an 80:20 split and compared to senior ultrasound physicians.</p><p><strong>Results: </strong>The CCH-NET model achieved a sensitivity of 0.762, specificity of 0.714, and an area under the curve (AUC) of 0.8248, outperforming senior ultrasound physicians (AUC = 0.681). It maintained consistent accuracy across test sets, with F1 scores of 0.778 and 0.720 in Test_1 and Test_2, respectively, and exhibited superior predictive rates.</p><p><strong>Conclusion: </strong>The CCH-NET model enhances accuracy in detecting early Seronegative Hashimoto's thyroiditis over senior ultrasound physicians.</p><p><strong>Ethics: </strong>No. [2023] H013 TRIAL REGISTRATION: Chinese Clinical Trial Registry;CTR2400092179; 12 November 2024.</p>","PeriodicalId":9040,"journal":{"name":"BMC Immunology","volume":"26 1","pages":"27"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12865-025-00708-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Seronegative Hashimoto's thyroiditis is often underdiagnosed due to the lack of antibody markers. Combining ultrasound radiomics with machine learning offers potential for early detection in patients with normal thyroid function.

Methods: Data from 164 patients with single thyroid lesions and normal thyroid function, treated surgically between 2016 and 2024, were retrospectively collected from four hospitals. Radiomics features were extracted from ultrasound images of non-tumorous hypoechoic areas. Pathological lymphocytic infiltration and hypoechoic ratios were evaluated by senior pathologists and ultrasound physicians. A machine learning model, CCH-NET, was developed using a random forest classifier after feature selection with Least Absolute Shrinkage and Selection Operator (LASSO) regression. The model was trained and tested with an 80:20 split and compared to senior ultrasound physicians.

Results: The CCH-NET model achieved a sensitivity of 0.762, specificity of 0.714, and an area under the curve (AUC) of 0.8248, outperforming senior ultrasound physicians (AUC = 0.681). It maintained consistent accuracy across test sets, with F1 scores of 0.778 and 0.720 in Test_1 and Test_2, respectively, and exhibited superior predictive rates.

Conclusion: The CCH-NET model enhances accuracy in detecting early Seronegative Hashimoto's thyroiditis over senior ultrasound physicians.

Ethics: No. [2023] H013 TRIAL REGISTRATION: Chinese Clinical Trial Registry;CTR2400092179; 12 November 2024.

基于超声放射组学的机器学习模型预测血清阴性桥本甲状腺炎:一项多中心研究。
背景:血清阴性桥本氏甲状腺炎由于缺乏抗体标记物,血清阴性桥本氏甲状腺炎往往诊断不足。将超声放射组学与机器学习相结合,为甲状腺功能正常患者的早期检测提供了可能:回顾性收集了来自四家医院的 164 名甲状腺单发病变且甲状腺功能正常的患者的数据,这些患者在 2016 年至 2024 年期间接受过手术治疗。从非肿瘤性低回声区的超声图像中提取放射组学特征。病理淋巴细胞浸润和低回声比例由资深病理学家和超声医生进行评估。在使用最小绝对收缩和选择操作器(LASSO)回归进行特征选择后,使用随机森林分类器开发了机器学习模型 CCH-NET。该模型按 80:20 的比例进行了训练和测试,并与资深超声波医生进行了比较:CCH-NET模型的灵敏度为0.762,特异度为0.714,曲线下面积(AUC)为0.8248,优于资深超声医生(AUC = 0.681)。它在不同的测试集中保持了一致的准确性,在 Test_1 和 Test_2 中的 F1 分数分别为 0.778 和 0.720,并表现出卓越的预测率:结论:与资深超声医生相比,CCH-NET 模型提高了检测早期血清阴性桥本氏甲状腺炎的准确性:编号:[2023] H013 试验登记:中国临床试验登记中心;CTR2400092179;2024年11月12日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Immunology
BMC Immunology 医学-免疫学
CiteScore
5.50
自引率
0.00%
发文量
54
审稿时长
1 months
期刊介绍: BMC Immunology is an open access journal publishing original peer-reviewed research articles in molecular, cellular, tissue-level, organismal, functional, and developmental aspects of the immune system as well as clinical studies and animal models of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信