The Role of Meiotic Drive in Chromosome Number Disparity Between Heterosporous and Homosporous Plants.

IF 3.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sylvia P Kinosian, Michael S Barker
{"title":"The Role of Meiotic Drive in Chromosome Number Disparity Between Heterosporous and Homosporous Plants.","authors":"Sylvia P Kinosian, Michael S Barker","doi":"10.1111/mec.17757","DOIUrl":null,"url":null,"abstract":"<p><p>In vascular plants, heterosporous lineages typically have fewer chromosomes than homosporous lineages. The underlying mechanism causing this disparity has been debated for over half a century. Although reproductive mode has been identified as critical to these patterns, the symmetry of meiosis during sporogenesis has been overlooked as a potential cause of the difference in chromosome numbers. In most heterosporous plants, meiosis during megasporogenesis is asymmetric, meaning one of the four meiotic products survives to become the egg. Comparatively, meiosis is symmetric in homosporous megasporogenesis and all meiotic products survive. The symmetry of meiosis is important because asymmetric meiosis enables meiotic drive and associated genomic changes, while symmetric meiosis cannot lead to meiotic drive. Meiotic drive is a deviation from Mendelian inheritance where genetic elements are preferentially inherited by the surviving egg cell, and can profoundly impact chromosome (and genome) size, structure, and number. Here we review how meiotic drive impacts chromosome number evolution in heterosporous plants, how the lack of meiotic drive in homosporous plants impacts their genomes, and explore future approaches to understand the role of meiotic drive on chromosome number across land plants.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17757"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17757","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In vascular plants, heterosporous lineages typically have fewer chromosomes than homosporous lineages. The underlying mechanism causing this disparity has been debated for over half a century. Although reproductive mode has been identified as critical to these patterns, the symmetry of meiosis during sporogenesis has been overlooked as a potential cause of the difference in chromosome numbers. In most heterosporous plants, meiosis during megasporogenesis is asymmetric, meaning one of the four meiotic products survives to become the egg. Comparatively, meiosis is symmetric in homosporous megasporogenesis and all meiotic products survive. The symmetry of meiosis is important because asymmetric meiosis enables meiotic drive and associated genomic changes, while symmetric meiosis cannot lead to meiotic drive. Meiotic drive is a deviation from Mendelian inheritance where genetic elements are preferentially inherited by the surviving egg cell, and can profoundly impact chromosome (and genome) size, structure, and number. Here we review how meiotic drive impacts chromosome number evolution in heterosporous plants, how the lack of meiotic drive in homosporous plants impacts their genomes, and explore future approaches to understand the role of meiotic drive on chromosome number across land plants.

减数分裂驱动在异孢子与同孢子植物染色体数目差异中的作用。
在维管植物中,异孢子世系通常比同孢子世系具有更少的染色体。造成这种差异的潜在机制已经争论了半个多世纪。尽管生殖模式已被确定为这些模式的关键,但孢子发生过程中减数分裂的对称性被忽视为染色体数目差异的潜在原因。在大多数异孢子植物中,大孢子发生过程中的减数分裂是不对称的,这意味着四个减数分裂产物中的一个存活下来成为卵。相比之下,在同孢子大孢子发生中,减数分裂是对称的,所有减数分裂产物都存活下来。减数分裂的对称性是重要的,因为不对称减数分裂可以导致减数分裂驱动和相关的基因组变化,而对称减数分裂不能导致减数分裂驱动。减数分裂驱动是对孟德尔遗传的一种偏离,遗传元素优先由存活的卵细胞遗传,并且可以深刻地影响染色体(和基因组)的大小、结构和数量。本文综述了减数分裂驱动对异孢子植物染色体数目进化的影响,以及同孢子植物减数分裂驱动缺失对其基因组的影响,并探讨了未来研究减数分裂驱动对陆地植物染色体数目影响的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信