Some Novel Oxirane-Thiirane Derivatives: Synthesis, Molecular docking and Enzymatic Inhibition for Therapeutic Potential.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vagif Farzaliyev, Adem Ertürk, Afat Huseynova, Yeliz Demir, Hatice Kızıltaş, Afsun Sujayev, Mir Ali İsakov, Beyim Ibrahimova, İlhami Gülçin
{"title":"Some Novel Oxirane-Thiirane Derivatives: Synthesis, Molecular docking and Enzymatic Inhibition for Therapeutic Potential.","authors":"Vagif Farzaliyev, Adem Ertürk, Afat Huseynova, Yeliz Demir, Hatice Kızıltaş, Afsun Sujayev, Mir Ali İsakov, Beyim Ibrahimova, İlhami Gülçin","doi":"10.1007/s12013-025-01740-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a series of new oxirane and thiirane (2a-g), were assessed for their influence on various metabolic enzymes, including acetylcholinesterase (AChE) and human carbonic anhydrase isoenzymes (hCA I and hCA II). So, in the first stage, 1-chloro-3-phenothiazylpropanol-2 (2), methyl, methoxy-substituted oxirane, thiirane (2a and 2b), methyl, 1,2-aminopropanethiols (2c-2f), trifluorinated aminethiol derivative (2g), have been synthesized. The structures of synthesized compound were confirmed by IR, NMR analysis. Enzyme inhibition studies demonstrated that all these compounds exhibited potent inhibitory effects on all the target enzymes, surpassing the standard inhibitors, as evidenced by their IC<sub>50</sub> and K<sub>i</sub> values. The K<sub>i</sub> values for the compounds concerning AChE, hCA I, and hCA II enzymes were in the ranges of 1.21 ± 0.072-12.64 ± 0.12, 5.93 ± 0.028- 81.87 ± 12.52 and 61.43 ± 10.01-344.22 ± 33.87 nM, respectively. Additionally, molecular docking studies were conducted to investigate further the binding interactions of the most potent inhibitors with enzyme active sites, revealing strong hydrogen bonding, π-stacking, and halogen interactions. These findings indicate that the synthesized compounds exhibit high affinity and specificity for the target enzymes, suggesting their potential for further development as therapeutic agents. Future studies will focus on optimizing the structural features of these compounds to enhance their selectivity and bioavailability, conducting in vivo evaluations to assess their pharmacokinetic and pharmacodynamic properties, and exploring their potential applications in the treatment of neurodegenerative and metabolic disorders.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01740-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a series of new oxirane and thiirane (2a-g), were assessed for their influence on various metabolic enzymes, including acetylcholinesterase (AChE) and human carbonic anhydrase isoenzymes (hCA I and hCA II). So, in the first stage, 1-chloro-3-phenothiazylpropanol-2 (2), methyl, methoxy-substituted oxirane, thiirane (2a and 2b), methyl, 1,2-aminopropanethiols (2c-2f), trifluorinated aminethiol derivative (2g), have been synthesized. The structures of synthesized compound were confirmed by IR, NMR analysis. Enzyme inhibition studies demonstrated that all these compounds exhibited potent inhibitory effects on all the target enzymes, surpassing the standard inhibitors, as evidenced by their IC50 and Ki values. The Ki values for the compounds concerning AChE, hCA I, and hCA II enzymes were in the ranges of 1.21 ± 0.072-12.64 ± 0.12, 5.93 ± 0.028- 81.87 ± 12.52 and 61.43 ± 10.01-344.22 ± 33.87 nM, respectively. Additionally, molecular docking studies were conducted to investigate further the binding interactions of the most potent inhibitors with enzyme active sites, revealing strong hydrogen bonding, π-stacking, and halogen interactions. These findings indicate that the synthesized compounds exhibit high affinity and specificity for the target enzymes, suggesting their potential for further development as therapeutic agents. Future studies will focus on optimizing the structural features of these compounds to enhance their selectivity and bioavailability, conducting in vivo evaluations to assess their pharmacokinetic and pharmacodynamic properties, and exploring their potential applications in the treatment of neurodegenerative and metabolic disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信