Porosity Engineering and Functionalization of Hyper-Cross-Linked Polymers for Highly Selective CO2 Adsorption.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Yahya Alemin, Jiarui Hu, Peixuan Xie, Xiaoyan Wang, Hui Gao, Bien Tan
{"title":"Porosity Engineering and Functionalization of Hyper-Cross-Linked Polymers for Highly Selective CO<sub>2</sub> Adsorption.","authors":"Yahya Alemin, Jiarui Hu, Peixuan Xie, Xiaoyan Wang, Hui Gao, Bien Tan","doi":"10.1002/marc.202500020","DOIUrl":null,"url":null,"abstract":"<p><p>Selective carbon dioxide (CO₂) capture from industrial processes is vital for reducing emissions associated with fossil fuel combustion. Achieving both high CO₂ adsorption capacity and excellent CO₂/N₂ selectivity, however, remains a significant challenge. In this study, a novel strategy is introduced that integrates porosity engineering using various cross-linkers-dimethoxymethane (F), p-dichloroxylene (D), and dibromomethane (B)-with post-synthetic modifications to incorporate nitro (─NO₂) and amino (─NH₂) functional groups into the polymer matrix. Nitration of hyper-cross-linked polymer based on dimethoxymethane (HCP-F) yields HCP-F-NO₂, which, upon reduction, produces the amine-functionalized framework HCP-F-NH₂. Both HCP-F-NO₂ and HCP-F-NH₂ demonstrate relatively high CO₂ uptake. Despite its lower surface area (784 m<sup>2</sup> g⁻¹) compared to HCP-F-NO₂ (1066 m<sup>2</sup> g⁻¹), HCP-F-NH₂ exhibits superior CO₂/N₂ selectivity of 100, compared to 70 for HCP-F-NO₂. Furthermore, ideal adsorbed solution theory (IAST) selectivity calculations at 298 K and 1 bar for 15:85 CO<sub>2</sub>/N<sub>2</sub> confirm enhanced CO<sub>2</sub>/N<sub>2</sub> selectivity after post-synthetic modification, with HCP-F-NH<sub>2</sub> reaching the highest value (64), breakthrough experiments at 298 K with 3 mL min<sup>-1</sup> flow rate validate increased CO<sub>2</sub> retention, while regeneration tests confirm structural stability and recyclability, reinforcing the potential of functionalized HCPs for CO<sub>2</sub> capture applications.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2500020"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500020","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Selective carbon dioxide (CO₂) capture from industrial processes is vital for reducing emissions associated with fossil fuel combustion. Achieving both high CO₂ adsorption capacity and excellent CO₂/N₂ selectivity, however, remains a significant challenge. In this study, a novel strategy is introduced that integrates porosity engineering using various cross-linkers-dimethoxymethane (F), p-dichloroxylene (D), and dibromomethane (B)-with post-synthetic modifications to incorporate nitro (─NO₂) and amino (─NH₂) functional groups into the polymer matrix. Nitration of hyper-cross-linked polymer based on dimethoxymethane (HCP-F) yields HCP-F-NO₂, which, upon reduction, produces the amine-functionalized framework HCP-F-NH₂. Both HCP-F-NO₂ and HCP-F-NH₂ demonstrate relatively high CO₂ uptake. Despite its lower surface area (784 m2 g⁻¹) compared to HCP-F-NO₂ (1066 m2 g⁻¹), HCP-F-NH₂ exhibits superior CO₂/N₂ selectivity of 100, compared to 70 for HCP-F-NO₂. Furthermore, ideal adsorbed solution theory (IAST) selectivity calculations at 298 K and 1 bar for 15:85 CO2/N2 confirm enhanced CO2/N2 selectivity after post-synthetic modification, with HCP-F-NH2 reaching the highest value (64), breakthrough experiments at 298 K with 3 mL min-1 flow rate validate increased CO2 retention, while regeneration tests confirm structural stability and recyclability, reinforcing the potential of functionalized HCPs for CO2 capture applications.

高选择性CO2吸附超交联聚合物的孔隙工程和功能化。
从工业流程中选择性地捕获二氧化碳(CO₂)对于减少化石燃料燃烧产生的排放至关重要。然而,要同时实现高 CO₂ 吸附能力和出色的 CO₂/N₂ 选择性,仍然是一项重大挑战。本研究介绍了一种新策略,即利用各种交联剂--二甲氧基甲烷(F)、对二氯二甲苯(D)和二溴甲烷(B)--进行孔隙率工程,并通过后合成修饰将硝基(-NO₂)和氨基(-NH₂)官能团加入聚合物基体。硝化基于二甲氧基甲烷(HCP-F)的超交联聚合物可生成 HCP-F-NO₂,还原后可生成胺功能化框架 HCP-F-NH₂。HCP-F-NO₂ 和 HCP-F-NH₂ 都具有相对较高的 CO₂ 吸收能力。尽管 HCP-F-NH₂ 的表面积(784 m2 g-¹)低于 HCP-F-NO₂(1066 m2 g-¹),但 HCP-F-NH₂ 的 CO₂/N₂ 选择性高达 100,而 HCP-F-NO₂ 只有 70。此外,在 298 K 和 1 bar 条件下对 15:85 CO2/N2 进行的理想吸附溶液理论(IAST)选择性计算证实,经过后合成修饰后,CO2/N2 的选择性得到增强,其中 HCP-F-NH2 的选择性达到最高值(64);在 298 K 条件下以 3 mL min-1 的流速进行的突破实验验证了二氧化碳截留率的提高,而再生测试则证实了其结构稳定性和可回收性,从而增强了功能化 HCP 在二氧化碳捕获应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信