Inhibition of surfactin biosynthesis in Bacillus subtilis using cell-permeable adenylation domain inhibitors.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-04-07 DOI:10.1002/cbic.202500136
Fumihiro Ishikawa, Sho Konno, Hideaki Kakeya, Genzoh Tanabe
{"title":"Inhibition of surfactin biosynthesis in Bacillus subtilis using cell-permeable adenylation domain inhibitors.","authors":"Fumihiro Ishikawa, Sho Konno, Hideaki Kakeya, Genzoh Tanabe","doi":"10.1002/cbic.202500136","DOIUrl":null,"url":null,"abstract":"<p><p>Several natural bacterial virulence factors are biosynthesized by nonribosomal peptide synthetases (NRPSs). Therefore, NRPSs producing such natural products have emerged as attractive antibiotic targets. We have previously reported N-(aminoacyl)sulfamoyladenosine (aminoacyl-AMS) derivatives with chemical modifications at 2'-OH group of the adenosine skeleton that inhibit NRPS amino acid adenylation (A) domains in recombinant enzyme systems, cellular lysates, and bacterial cells. The introduction of a couple of functionalities at the 2'-OH group preserve the binding affinity toward NRPS amino acid A-domains and improve cell permeability of the AMS scaffold. However, the effects of these compounds on secondary metabolism have not yet been explored. In this study, we validated an affinity-based protein profiling (AfBPP) probe, Leu-AMS-BPyne, for in-cell applications, including imaging of NRPS activities in bacteria. Next, we synthesized L-Leu-AMS derivatives incorporating methyl, benzyl, and cyanomethyl functionalities at the 2'-OH group and investigated inhibitory activity toward intracellular surfactin-NRPSs in the surfactin-producer Bacillus subtilisATCC 21332 using the AfBPP probe. Finally, we demonstrated the attenuation of surfactin production using a Leu-AMS-BPyne probe and L-Leu-AMS derivatives in B. subtilis. These results indicate that chemical modifications at the 2'-OH group provide a way to develop cell-permeable and functional NRPS A-domain inhibitors.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500136"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500136","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Several natural bacterial virulence factors are biosynthesized by nonribosomal peptide synthetases (NRPSs). Therefore, NRPSs producing such natural products have emerged as attractive antibiotic targets. We have previously reported N-(aminoacyl)sulfamoyladenosine (aminoacyl-AMS) derivatives with chemical modifications at 2'-OH group of the adenosine skeleton that inhibit NRPS amino acid adenylation (A) domains in recombinant enzyme systems, cellular lysates, and bacterial cells. The introduction of a couple of functionalities at the 2'-OH group preserve the binding affinity toward NRPS amino acid A-domains and improve cell permeability of the AMS scaffold. However, the effects of these compounds on secondary metabolism have not yet been explored. In this study, we validated an affinity-based protein profiling (AfBPP) probe, Leu-AMS-BPyne, for in-cell applications, including imaging of NRPS activities in bacteria. Next, we synthesized L-Leu-AMS derivatives incorporating methyl, benzyl, and cyanomethyl functionalities at the 2'-OH group and investigated inhibitory activity toward intracellular surfactin-NRPSs in the surfactin-producer Bacillus subtilisATCC 21332 using the AfBPP probe. Finally, we demonstrated the attenuation of surfactin production using a Leu-AMS-BPyne probe and L-Leu-AMS derivatives in B. subtilis. These results indicate that chemical modifications at the 2'-OH group provide a way to develop cell-permeable and functional NRPS A-domain inhibitors.

细胞渗透性腺苷化结构域抑制剂抑制枯草芽孢杆菌表面素合成的研究。
一些天然细菌毒力因子是由非核糖体肽合成酶(NRPSs)生物合成的。因此,产生此类天然产物的非核糖体肽合成酶已成为具有吸引力的抗生素靶标。我们以前曾报道过在腺苷骨架的 2'-OH 基团上进行化学修饰的 N-(氨基酰)氨基磺酰基腺苷(aminoacyl-AMS)衍生物,它们能抑制重组酶系统、细胞裂解液和细菌细胞中的 NRPS 氨基酸腺苷化(A)结构域。在 2'-OH 基团上引入几个官能团可保持与 NRPS 氨基酸 A 结构域的结合亲和力,并提高 AMS 支架的细胞渗透性。然而,这些化合物对次级代谢的影响尚未得到探讨。在本研究中,我们验证了一种基于亲和力的蛋白质谱分析(AfBPP)探针--Leu-AMS-BPyne--在细胞内的应用,包括细菌中 NRPS 活动的成像。接着,我们合成了在 2'-OH 基团上含有甲基、苄基和氰甲基官能团的 L-Leu-AMS 衍生物,并使用 AfBPP 探针研究了表面活性素生产者枯草芽孢杆菌(Bacillus subtilisATCC 21332)细胞内表面活性素-NRPS 的抑制活性。最后,我们使用 Leu-AMS-BPyne 探针和 L-Leu-AMS 衍生物证明了表面活性素在枯草芽孢杆菌中产生的衰减作用。这些结果表明,2'-OH 基团的化学修饰为开发细胞渗透性和功能性 NRPS A 域抑制剂提供了一种途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信