Lukas Hasecke, Maximilian Breitenbach, Martí Gimferrer, Rainer Oswald, Ricardo A Mata
{"title":"Addressing Anharmonic Effects with Density-Fitted Multicomponent Density Functional Theory.","authors":"Lukas Hasecke, Maximilian Breitenbach, Martí Gimferrer, Rainer Oswald, Ricardo A Mata","doi":"10.1021/acs.jpca.5c00382","DOIUrl":null,"url":null,"abstract":"<p><p>In this contribution we present the first local density-fitted multicomponent density functional theory implementation and assess its use for the calculation of anharmonic zero-point energies. Four challenging cases of molecular aggregates are reviewed: deprotonated formic acid trimer, diphenyl ether-<i>tert</i>-butyl alcohol conformers, anisole/methanol and anisole/2-naphtol dimers. These are all cases where a mismatch between the low-temperature computationally predicted minimum and the experimentally determined structure was observed. Through the use of nuclear-electronic orbital energies in the thermodynamic correction, the correct energetic ordering is recovered. For the smallest system, we compare our results to vibrational perturbation theory anharmonically corrected zero-point energy, with perfect agreement for the lower-lying conformers. The performance of the newly developed code and the density fitting errors are also analyzed. Overall, the new implementation shows a very good scaling with system size and the density fitting approximations exhibit a negligible impact.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00382","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this contribution we present the first local density-fitted multicomponent density functional theory implementation and assess its use for the calculation of anharmonic zero-point energies. Four challenging cases of molecular aggregates are reviewed: deprotonated formic acid trimer, diphenyl ether-tert-butyl alcohol conformers, anisole/methanol and anisole/2-naphtol dimers. These are all cases where a mismatch between the low-temperature computationally predicted minimum and the experimentally determined structure was observed. Through the use of nuclear-electronic orbital energies in the thermodynamic correction, the correct energetic ordering is recovered. For the smallest system, we compare our results to vibrational perturbation theory anharmonically corrected zero-point energy, with perfect agreement for the lower-lying conformers. The performance of the newly developed code and the density fitting errors are also analyzed. Overall, the new implementation shows a very good scaling with system size and the density fitting approximations exhibit a negligible impact.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.