Carolina van Baalen, Laura Alvarez, Robert W Style, Lucio Isa
{"title":"Tunable assembly of confined Janus microswimmers in sub-kHz AC electric fields under gravity.","authors":"Carolina van Baalen, Laura Alvarez, Robert W Style, Lucio Isa","doi":"10.1039/d4sm01511h","DOIUrl":null,"url":null,"abstract":"<p><p>Active systems comprising micron-sized self-propelling units, also termed microswimmers, are promising candidates for the bottom-up assembly of small structures and reconfigurable materials. Here we leverage field-driven colloidal assembly to induce structural transformations in dense layers of microswimmers driven by an alternating current (AC) electric field and confined in a microfabricated trap under the influence of gravity. By varying the electric field frequency, we realize significant structural transformations, from a gas-like state at high frequencies to dynamically rearranging dense crystalline clusters at lower frequencies, characterized by vorticity in their dynamics. We demonstrate the ability to switch between these states on-demand, showing that the clustering mechanism differs from motility-induced phase separation. Our results offer a valuable framework for designing high-density active matter systems with controllable structural properties, envisioned to advance the development of artificial materials with self-healing and reconfiguration capabilities.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01511h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Active systems comprising micron-sized self-propelling units, also termed microswimmers, are promising candidates for the bottom-up assembly of small structures and reconfigurable materials. Here we leverage field-driven colloidal assembly to induce structural transformations in dense layers of microswimmers driven by an alternating current (AC) electric field and confined in a microfabricated trap under the influence of gravity. By varying the electric field frequency, we realize significant structural transformations, from a gas-like state at high frequencies to dynamically rearranging dense crystalline clusters at lower frequencies, characterized by vorticity in their dynamics. We demonstrate the ability to switch between these states on-demand, showing that the clustering mechanism differs from motility-induced phase separation. Our results offer a valuable framework for designing high-density active matter systems with controllable structural properties, envisioned to advance the development of artificial materials with self-healing and reconfiguration capabilities.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.