{"title":"Autonomous Abiotic Thermal Protectant for Immunoglobulin G: Reducing the Need for Cold Chain Storage.","authors":"Beverly Chou, Rishad J Dalal, Kenneth J Shea","doi":"10.1021/acs.biomac.4c01492","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies are vital biologic therapeutics, but their impact is limited by thermal instability. This requires maintaining a cold chain, from the point of manufacture to the point of use. We report an approach that could reduce the need for a cold chain. We present a thermal protectant (TP) for immunoglobulin G (IgG) that mimics the behavior of the heat shock protein HSP60. This hydrogel copolymer nanoparticle shows minimal affinity for IgG at or below 25 °C. As temperatures rise and approach the proteins melting temperature (<i>T</i><sub>m</sub>), the TP undergoes an autonomous phase transition (∼27 °C), above which the TP shows high affinity for IgG sequestering and stabilizing IgG at temperatures far above <i>T</i><sub>m</sub>. As temperatures return to RT, the TP reverts to its water-swollen state, allowing any metastable proteins time to refold to their native state before being released. The optimized TP has very low IgG molar capacity, effectively isolating and preventing aggregation at elevated temperatures.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01492","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibodies are vital biologic therapeutics, but their impact is limited by thermal instability. This requires maintaining a cold chain, from the point of manufacture to the point of use. We report an approach that could reduce the need for a cold chain. We present a thermal protectant (TP) for immunoglobulin G (IgG) that mimics the behavior of the heat shock protein HSP60. This hydrogel copolymer nanoparticle shows minimal affinity for IgG at or below 25 °C. As temperatures rise and approach the proteins melting temperature (Tm), the TP undergoes an autonomous phase transition (∼27 °C), above which the TP shows high affinity for IgG sequestering and stabilizing IgG at temperatures far above Tm. As temperatures return to RT, the TP reverts to its water-swollen state, allowing any metastable proteins time to refold to their native state before being released. The optimized TP has very low IgG molar capacity, effectively isolating and preventing aggregation at elevated temperatures.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.