{"title":"Revolutionizing Inorganic Nanofibers: Bridging Functional Elements to a Future System.","authors":"Shujing Li, Xiangyu Meng, Chuntong Zhu, Wanlin Xu, Yueming Sun, Xiaofeng Lu, Yunqian Dai","doi":"10.1021/acsnano.4c17688","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of intelligent ecosystems depends upon not only technological innovation but also a multidimensional understanding of material-world interactions. This theoretical transformation prompts increasing demands for multifunctional materials exhibiting hierarchical organization across multiple length scales. Inorganic nanofibers demonstrate potential in bridging the gap between microscale and macroscale through their three-dimensional architectures. However, their inherent brittleness, primarily resulting from inferior structural integrity poses, significantly limits their current applications. This critical limitation highlights the urgent necessity for developing fabrication strategies that simultaneously enhance the mechanical flexibility and robustness, ensuring reliable performance under extreme operational conditions. This comprehensive review systematically examines brittle mechanism fracture through multiscale analysis including molecular, nanoscale, and microscale dimensions. It presents innovative methodologies integrating simulation-guided structural design with advanced in situ characterization techniques capable of real-time monitoring under a practical stress-strain process. Furthermore, the discussion progresses to address contemporary challenges and emergent solutions in oxide nanofiber engineering, providing strategic insights for developing mechanically robust flexible systems with stable functional properties. Ultimately, this review examines the potential of inorganic nanofibers to overcome the limitations of nano powder materials and achieve their promising real-world applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"14579-14604"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17688","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of intelligent ecosystems depends upon not only technological innovation but also a multidimensional understanding of material-world interactions. This theoretical transformation prompts increasing demands for multifunctional materials exhibiting hierarchical organization across multiple length scales. Inorganic nanofibers demonstrate potential in bridging the gap between microscale and macroscale through their three-dimensional architectures. However, their inherent brittleness, primarily resulting from inferior structural integrity poses, significantly limits their current applications. This critical limitation highlights the urgent necessity for developing fabrication strategies that simultaneously enhance the mechanical flexibility and robustness, ensuring reliable performance under extreme operational conditions. This comprehensive review systematically examines brittle mechanism fracture through multiscale analysis including molecular, nanoscale, and microscale dimensions. It presents innovative methodologies integrating simulation-guided structural design with advanced in situ characterization techniques capable of real-time monitoring under a practical stress-strain process. Furthermore, the discussion progresses to address contemporary challenges and emergent solutions in oxide nanofiber engineering, providing strategic insights for developing mechanically robust flexible systems with stable functional properties. Ultimately, this review examines the potential of inorganic nanofibers to overcome the limitations of nano powder materials and achieve their promising real-world applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.