Noninvasive Transdermal Delivery of STING Agonists Reshapes the Immune Microenvironment of Melanoma and Potentiates Checkpoint Blockade Therapy Efficacy.
Junjie Zhang, Hui Yang, Liang Li, Changkun Peng, Jingying Li
{"title":"Noninvasive Transdermal Delivery of STING Agonists Reshapes the Immune Microenvironment of Melanoma and Potentiates Checkpoint Blockade Therapy Efficacy.","authors":"Junjie Zhang, Hui Yang, Liang Li, Changkun Peng, Jingying Li","doi":"10.1021/acsabm.4c02004","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of immunotherapy as a revolutionary therapeutic modality has fostered confidence and underscored its potent efficacy in tumor therapy. However, enhancing the therapeutic efficacy of immunotherapy by precise and judicious administration poses a significant challenge. In this context, we have developed a disulfide-bearing transdermal nanovaccine by integrating a thiol-reactive agent lipoic acid (LA) into a metal-coordinated cyclic dinucleotide nanoassembly, designated as LA-Mn-cGAMP (LMC) nanovaccines. Upon topical application to the skin with melanoma, the dithiolane moiety of LA enables thiol-disulfide dynamic exchange in the skin, hence facilitating penetration into both the skin and subcutaneous tumor tissues via the thiol-mediated uptake (TMU) mechanism. Our findings demonstrate that transdermal administration of LMC significantly enhances STING activation, mitigates the immunosuppressive tumor microenvironment (TME), and retards melanoma progression. Moreover, the remodeled TME amplifies the efficacy of immune checkpoint inhibitors. This advancement offers an administration strategy for existing STING agonist therapy, potentially improving the biosafety of immunotherapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c02004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of immunotherapy as a revolutionary therapeutic modality has fostered confidence and underscored its potent efficacy in tumor therapy. However, enhancing the therapeutic efficacy of immunotherapy by precise and judicious administration poses a significant challenge. In this context, we have developed a disulfide-bearing transdermal nanovaccine by integrating a thiol-reactive agent lipoic acid (LA) into a metal-coordinated cyclic dinucleotide nanoassembly, designated as LA-Mn-cGAMP (LMC) nanovaccines. Upon topical application to the skin with melanoma, the dithiolane moiety of LA enables thiol-disulfide dynamic exchange in the skin, hence facilitating penetration into both the skin and subcutaneous tumor tissues via the thiol-mediated uptake (TMU) mechanism. Our findings demonstrate that transdermal administration of LMC significantly enhances STING activation, mitigates the immunosuppressive tumor microenvironment (TME), and retards melanoma progression. Moreover, the remodeled TME amplifies the efficacy of immune checkpoint inhibitors. This advancement offers an administration strategy for existing STING agonist therapy, potentially improving the biosafety of immunotherapy.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.