{"title":"Modeling the Entire Filtration Process from Depth Filtration to Surface Filtration with a Multilayer Construction and an Offset for Dust Cake Growth","authors":"Dr.-Ing. habil. Qian Zhang","doi":"10.1002/cite.202400154","DOIUrl":null,"url":null,"abstract":"<p>Until now, there has been no coherent model for a holistic view of the entire filtration process. While the filtration kinetics of a depth filter can be investigated using various model approaches (dendrite growth model or fiber growth model) to describe particle separation in the clogging phase, it is not yet possible to transition to surface filtration by continuing the same model calculation. A new modeling approach with a multilayer construction and an offset for the growth of the dust cake is presented, which enables the description of particle separation by using analytical models throughout the entire filtration process without a separate add-on model for the change between depth and surface filtration. The continuous evaluation of the locally resolved structural changes, i.e., in the individual sub-layers, as well as the associated changes in the separation efficiency of the single-collectors in the growing two-component filtering system provide insightful information about the filtration kinetics during the entire filtration process and about the process of dust cake formation.<sup>1)</sup></p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"97 4","pages":"334-343"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400154","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Ingenieur Technik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Until now, there has been no coherent model for a holistic view of the entire filtration process. While the filtration kinetics of a depth filter can be investigated using various model approaches (dendrite growth model or fiber growth model) to describe particle separation in the clogging phase, it is not yet possible to transition to surface filtration by continuing the same model calculation. A new modeling approach with a multilayer construction and an offset for the growth of the dust cake is presented, which enables the description of particle separation by using analytical models throughout the entire filtration process without a separate add-on model for the change between depth and surface filtration. The continuous evaluation of the locally resolved structural changes, i.e., in the individual sub-layers, as well as the associated changes in the separation efficiency of the single-collectors in the growing two-component filtering system provide insightful information about the filtration kinetics during the entire filtration process and about the process of dust cake formation.1)
期刊介绍:
Die Chemie Ingenieur Technik ist die wohl angesehenste deutschsprachige Zeitschrift für Verfahrensingenieure, technische Chemiker, Apparatebauer und Biotechnologen. Als Fachorgan von DECHEMA, GDCh und VDI-GVC gilt sie als das unverzichtbare Forum für den Erfahrungsaustausch zwischen Forschern und Anwendern aus Industrie, Forschung und Entwicklung. Wissenschaftlicher Fortschritt und Praxisnähe: Eine Kombination, die es nur in der CIT gibt!