Piezoelectric Energy Harvesting: From Fundamentals to Advanced Applications

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Rahul Bhatnagar, Varsha Yadav, Upendra Kumar, Marcos Flores Carrasco
{"title":"Piezoelectric Energy Harvesting: From Fundamentals to Advanced Applications","authors":"Rahul Bhatnagar,&nbsp;Varsha Yadav,&nbsp;Upendra Kumar,&nbsp;Marcos Flores Carrasco","doi":"10.1002/ente.202401455","DOIUrl":null,"url":null,"abstract":"<p>\nPiezoelectric energy harvesting (PEH) has surfaced as an innovative technology for supplying power to low-power electronic devices by converting mechanical energy into electrical energy. This technology utilizes the piezoelectric effect, in which specific materials produce an electric charge when they experience mechanical stress. Piezoelectric materials can be categorized into three main types: single crystal, composite, and polymeric. Single-crystal materials exhibit elevated piezoelectric coefficients and stability; however, they tend to be costly and fragile. Composite materials integrate piezoelectric ceramics with polymer matrices, enhancing flexibility and lowering costs. Polymeric materials exhibit lightweight, flexible, and biocompatibility characteristics, rendering them ideal for wearable and implantable applications. Although PEH presents considerable promise, it is essential to tackle challenges, including low power output, material constraints, and environmental influences. Future investigations will focus on creating innovative materials that exhibit improved piezoelectric characteristics, refining device architecture for optimal energy conversion, and incorporating piezoelectric harvesting technology into intelligent systems. By addressing these challenges and investigating creative solutions, PEH can significantly advance sustainable and self-powered electronic devices.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401455","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric energy harvesting (PEH) has surfaced as an innovative technology for supplying power to low-power electronic devices by converting mechanical energy into electrical energy. This technology utilizes the piezoelectric effect, in which specific materials produce an electric charge when they experience mechanical stress. Piezoelectric materials can be categorized into three main types: single crystal, composite, and polymeric. Single-crystal materials exhibit elevated piezoelectric coefficients and stability; however, they tend to be costly and fragile. Composite materials integrate piezoelectric ceramics with polymer matrices, enhancing flexibility and lowering costs. Polymeric materials exhibit lightweight, flexible, and biocompatibility characteristics, rendering them ideal for wearable and implantable applications. Although PEH presents considerable promise, it is essential to tackle challenges, including low power output, material constraints, and environmental influences. Future investigations will focus on creating innovative materials that exhibit improved piezoelectric characteristics, refining device architecture for optimal energy conversion, and incorporating piezoelectric harvesting technology into intelligent systems. By addressing these challenges and investigating creative solutions, PEH can significantly advance sustainable and self-powered electronic devices.

Abstract Image

压电能量收集:从基础到高级应用
压电能量收集(PEH)是一种将机械能转化为电能为低功耗电子设备供电的创新技术。这项技术利用了压电效应,即特定材料在经受机械应力时产生电荷。压电材料可分为三种主要类型:单晶、复合和聚合物。单晶材料具有较高的压电系数和稳定性;然而,它们往往既昂贵又脆弱。复合材料将压电陶瓷与聚合物基体结合在一起,提高了柔性,降低了成本。聚合物材料具有轻质、柔韧和生物相容性的特点,使其成为可穿戴和植入式应用的理想选择。尽管PEH具有相当大的前景,但必须解决包括低功率输出、材料限制和环境影响在内的挑战。未来的研究将集中于创造具有改进压电特性的创新材料,改进设备结构以实现最佳能量转换,并将压电收集技术纳入智能系统。通过应对这些挑战并研究创造性的解决方案,PEH可以显著推进可持续和自供电的电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信