Sparse graph signals – uncertainty principles and recovery

Q1 Mathematics
Tarek Emmrich, Martina Juhnke, Stefan Kunis
{"title":"Sparse graph signals – uncertainty principles and recovery","authors":"Tarek Emmrich,&nbsp;Martina Juhnke,&nbsp;Stefan Kunis","doi":"10.1002/gamm.70002","DOIUrl":null,"url":null,"abstract":"<p>We study signals that are sparse either on the vertices of a graph or in the graph spectral domain. Recent results on the algebraic properties of random integer matrices as well as on the boundedness of eigenvectors of random matrices imply two types of support size uncertainty principles for graph signals. Indeed, the algebraic properties imply uniqueness results if a sparse signal is sampled at any set of minimal size in the other domain. The boundedness properties of eigenvectors imply stable reconstruction by basis pursuit if a sparse signal is sampled at a slightly larger randomly selected set in the other domain.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"48 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We study signals that are sparse either on the vertices of a graph or in the graph spectral domain. Recent results on the algebraic properties of random integer matrices as well as on the boundedness of eigenvectors of random matrices imply two types of support size uncertainty principles for graph signals. Indeed, the algebraic properties imply uniqueness results if a sparse signal is sampled at any set of minimal size in the other domain. The boundedness properties of eigenvectors imply stable reconstruction by basis pursuit if a sparse signal is sampled at a slightly larger randomly selected set in the other domain.

Abstract Image

稀疏图信号-不确定性原理和恢复
我们研究在图的顶点上或在图的谱域中稀疏的信号。最近关于随机整数矩阵的代数性质和随机矩阵特征向量的有界性的研究结果暗示了图信号的两类支持大小不确定性原理。事实上,代数性质意味着如果在另一个域中的任何最小尺寸集合上采样稀疏信号,则得到唯一性结果。特征向量的有界性意味着如果一个稀疏信号在另一个域中的一个稍大的随机选择的集合上采样,则通过基追踪进行稳定的重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信