Optimized J2 Recovery for Multi-Decadal Geophysical Studies

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
B. D. Loomis, T. J. Sabaka, K. E. Rachlin, M. J. Croteau, F. G. Lemoine, R. S. Nerem, A. Bellas-Manley
{"title":"Optimized J2 Recovery for Multi-Decadal Geophysical Studies","authors":"B. D. Loomis,&nbsp;T. J. Sabaka,&nbsp;K. E. Rachlin,&nbsp;M. J. Croteau,&nbsp;F. G. Lemoine,&nbsp;R. S. Nerem,&nbsp;A. Bellas-Manley","doi":"10.1029/2024GL114472","DOIUrl":null,"url":null,"abstract":"<p>The time history of the Earth's dynamic oblateness, or <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${J}_{2}$</annotation>\n </semantics></math>, is a unique climate data record, with its estimation from satellite laser ranging (SLR) tracking data beginning in 1976. Due to its impact on variations in length of day (LOD), the long-term <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${J}_{2}$</annotation>\n </semantics></math> time series is frequently applied to LOD studies and their contributions, which include tidal friction, glacial isostatic adjustment, ice melt, sea level change, and the angular momentum exchange between the fluid outer core and the mantle. Previous studies demonstrated that the accurate recovery of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${J}_{2}$</annotation>\n </semantics></math> requires the use of time variable gravity models from GRACE when processing the SLR tracking data. However, no reliable models exist prior to GRACE's 2002 launch, calling into to question the accuracy and utility of the pre-GRACE estimates. Here we present a new approach to accurately recover <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>J</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${J}_{2}$</annotation>\n </semantics></math> without gravity modeling, resulting in the first fully consistent long-term solution for climate studies.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114472","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114472","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The time history of the Earth's dynamic oblateness, or J 2 ${J}_{2}$ , is a unique climate data record, with its estimation from satellite laser ranging (SLR) tracking data beginning in 1976. Due to its impact on variations in length of day (LOD), the long-term J 2 ${J}_{2}$ time series is frequently applied to LOD studies and their contributions, which include tidal friction, glacial isostatic adjustment, ice melt, sea level change, and the angular momentum exchange between the fluid outer core and the mantle. Previous studies demonstrated that the accurate recovery of J 2 ${J}_{2}$ requires the use of time variable gravity models from GRACE when processing the SLR tracking data. However, no reliable models exist prior to GRACE's 2002 launch, calling into to question the accuracy and utility of the pre-GRACE estimates. Here we present a new approach to accurately recover J 2 ${J}_{2}$ without gravity modeling, resulting in the first fully consistent long-term solution for climate studies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信