Cannabidiol-Rich Cannabis sativa L. Extract Alleviates LPS-Induced Neuroinflammation Behavioral Alterations, and Astrocytic Bioenergetic Impairment in Male Mice
Hind Ibork, Zakaria Ait Lhaj, Khadija Boualam, Sara El Idrissi, Ahmet B. Ortaakarsu, Lhoussain Hajji, Annabelle Manalo Morgan, Farid Khallouki, Khalid Taghzouti, Oualid Abboussi
{"title":"Cannabidiol-Rich Cannabis sativa L. Extract Alleviates LPS-Induced Neuroinflammation Behavioral Alterations, and Astrocytic Bioenergetic Impairment in Male Mice","authors":"Hind Ibork, Zakaria Ait Lhaj, Khadija Boualam, Sara El Idrissi, Ahmet B. Ortaakarsu, Lhoussain Hajji, Annabelle Manalo Morgan, Farid Khallouki, Khalid Taghzouti, Oualid Abboussi","doi":"10.1002/jnr.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Neuroinflammation is a hallmark of various neurodegenerative disorders, yet effective treatments remain limited. This study investigates the neuroprotective potential of a cannabidiol (CBD)-Rich <i>Cannabis sativa</i> L. (CS) extract in a lipopolysaccharide (LPS)-induced neuroinflammation mouse model. The effects on anxiety-like behavior, cognitive function, and locomotor activity were assessed using behavioral tests (open field, elevated plus maze, novel object recognition, and Morris water maze). Antioxidant activity was measured by assaying glutathione (GSH) levels and lipid peroxidation by-products (TBARs). Anti-inflammatory properties were evaluated using quantitative reverse transcription polymerase chain reaction (QRt-PCR) for proinflammatory cytokines (IL-6 and TNF-α), glial fibrillary acidic protein (GFAP), and cannabinoid receptor 1 (CB1) mRNAs in the prefrontal cortex (PFC). Astrocytic bioenergetics were analyzed using extracellular flux assays. Additionally, computational inference with a deep learning approach was conducted to evaluate the synergistic interactions among CS phytocompounds on the CB1 receptors. Compared with synthetic CBD, the CS extract (20.0 mg/kg) demonstrated superior efficacy in mitigating LPS-induced anxiety-like behavior, cognitive deficits, and locomotor impairments. It also significantly mitigated oxidative stress (increased GSH, reduced TBARs) and suppressed proinflammatory cytokines and GFAP mRNAs, indicating potent anti-inflammatory properties. The extract modulated CB1 receptor expression and preserved metabolic homeostasis in cortical astrocytes, preventing their shift from glycolysis to oxidative phosphorylation under neuroinflammatory conditions. Computational modeling highlighted conformational changes in CB1 receptor residues induced by Delta-9-THC that enhanced CBD binding. These findings underscore the potential of CS extract as a therapeutic candidate for managing neuroinflammation and its associated neurodegenerative consequences, warranting further clinical exploration.</p>\n </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70035","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation is a hallmark of various neurodegenerative disorders, yet effective treatments remain limited. This study investigates the neuroprotective potential of a cannabidiol (CBD)-Rich Cannabis sativa L. (CS) extract in a lipopolysaccharide (LPS)-induced neuroinflammation mouse model. The effects on anxiety-like behavior, cognitive function, and locomotor activity were assessed using behavioral tests (open field, elevated plus maze, novel object recognition, and Morris water maze). Antioxidant activity was measured by assaying glutathione (GSH) levels and lipid peroxidation by-products (TBARs). Anti-inflammatory properties were evaluated using quantitative reverse transcription polymerase chain reaction (QRt-PCR) for proinflammatory cytokines (IL-6 and TNF-α), glial fibrillary acidic protein (GFAP), and cannabinoid receptor 1 (CB1) mRNAs in the prefrontal cortex (PFC). Astrocytic bioenergetics were analyzed using extracellular flux assays. Additionally, computational inference with a deep learning approach was conducted to evaluate the synergistic interactions among CS phytocompounds on the CB1 receptors. Compared with synthetic CBD, the CS extract (20.0 mg/kg) demonstrated superior efficacy in mitigating LPS-induced anxiety-like behavior, cognitive deficits, and locomotor impairments. It also significantly mitigated oxidative stress (increased GSH, reduced TBARs) and suppressed proinflammatory cytokines and GFAP mRNAs, indicating potent anti-inflammatory properties. The extract modulated CB1 receptor expression and preserved metabolic homeostasis in cortical astrocytes, preventing their shift from glycolysis to oxidative phosphorylation under neuroinflammatory conditions. Computational modeling highlighted conformational changes in CB1 receptor residues induced by Delta-9-THC that enhanced CBD binding. These findings underscore the potential of CS extract as a therapeutic candidate for managing neuroinflammation and its associated neurodegenerative consequences, warranting further clinical exploration.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.