Quantum automorphism groups of lexicographic products of graphs

IF 1 2区 数学 Q1 MATHEMATICS
Arnbjörg Soffía Árnadóttir, Josse van Dobben de Bruyn, Prem Nigam Kar, David E. Roberson, Peter Zeman
{"title":"Quantum automorphism groups of lexicographic products of graphs","authors":"Arnbjörg Soffía Árnadóttir,&nbsp;Josse van Dobben de Bruyn,&nbsp;Prem Nigam Kar,&nbsp;David E. Roberson,&nbsp;Peter Zeman","doi":"10.1112/jlms.70141","DOIUrl":null,"url":null,"abstract":"<p>Sabidussi's theorem [Duke Math. J. <b>28</b> (1961), 573–578] gives necessary and sufficient conditions under which the automorphism group of a lexicographic product of two graphs is a wreath product of the respective automorphism groups. We prove a quantum version of Sabidussi's theorem for finite graphs, with the automorphism groups replaced by quantum automorphism groups and the wreath product replaced by the free wreath product of quantum groups. This extends the result of Chassaniol [J. Algebra <b>456</b>, 2016, 23–45], who proved it for regular graphs. Moreover, we apply our result to lexicographic products of quantum vertex transitive graphs, determining their quantum automorphism groups even when Sabidussi's conditions do not apply.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70141","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70141","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Sabidussi's theorem [Duke Math. J. 28 (1961), 573–578] gives necessary and sufficient conditions under which the automorphism group of a lexicographic product of two graphs is a wreath product of the respective automorphism groups. We prove a quantum version of Sabidussi's theorem for finite graphs, with the automorphism groups replaced by quantum automorphism groups and the wreath product replaced by the free wreath product of quantum groups. This extends the result of Chassaniol [J. Algebra 456, 2016, 23–45], who proved it for regular graphs. Moreover, we apply our result to lexicographic products of quantum vertex transitive graphs, determining their quantum automorphism groups even when Sabidussi's conditions do not apply.

Abstract Image

图的字典积的量子自同构群
Sabidussi定理[杜克数学]。J. 28(1961), 573-578]给出了两个图的词典积的自同构群是各自自同构群的环积的充分必要条件。我们证明了有限图的量子版Sabidussi定理,用量子自同构群代替自同构群,用量子群的自由圈积代替圈积。这扩展了沙沙醇的结果[J]。代数456,2016,23-45],他在正则图上证明了它。此外,我们将我们的结果应用于量子顶点传递图的字典积,即使在Sabidussi条件不适用的情况下,也确定了它们的量子自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信