{"title":"Amino-Modified Porous Aromatic Frameworks for Enhanced Lithium-Ion Dissociation and Transport in Polymer Electrolytes","authors":"Ruyi Ma, Chengwei Lv, Zhangnan Li","doi":"10.1002/ente.202401692","DOIUrl":null,"url":null,"abstract":"<p>Enhancing the ionic conductivity of solid polymer electrolytes and accelerating ion transport are pivotal challenges in achieving lithium-ion batteries with high energy density and excellent electrochemical performance. In this study, amino-modified porous aromatic frameworks (AMPAF) are prepared. The amino group in AMPAF stabilizes the anion through hydrogen bonding to reduce the dissociation energy barrier of Li<sup>+</sup>, enabling Li<sup>+</sup> to be more easily dissociated from lithium salts. Additionally, the abundant pores of AMPAF promote the rapid transport of Li<sup>+</sup>. The prepared quasi-solid polymer electrolyte (AMPAF-QSPE) exhibited a high Li<sup>+</sup> conductivity of 7.62 × 10<sup>−5</sup> S cm<sup>−1</sup> and a Li<sup>+</sup> transference number as high as 0.55, which proves the restriction of the amino group in AMPAF on the movement of anions and the ability to dissociate lithium salts. The discharge specific capacity of Li//AMPAF-QSPE//LiFePO<sub>4</sub> reached as high as 137 mAh g<sup>−1</sup> at 0.2 °C, and the capacity retention rate was stable at 85% after 200 cycles. This article presents an effective attempt to enhance the overall performance of polymer electrolytes using amino-modified PAF, offering an innovative perspective for the development of electrochemical energy storage technologies.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 4","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401692","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the ionic conductivity of solid polymer electrolytes and accelerating ion transport are pivotal challenges in achieving lithium-ion batteries with high energy density and excellent electrochemical performance. In this study, amino-modified porous aromatic frameworks (AMPAF) are prepared. The amino group in AMPAF stabilizes the anion through hydrogen bonding to reduce the dissociation energy barrier of Li+, enabling Li+ to be more easily dissociated from lithium salts. Additionally, the abundant pores of AMPAF promote the rapid transport of Li+. The prepared quasi-solid polymer electrolyte (AMPAF-QSPE) exhibited a high Li+ conductivity of 7.62 × 10−5 S cm−1 and a Li+ transference number as high as 0.55, which proves the restriction of the amino group in AMPAF on the movement of anions and the ability to dissociate lithium salts. The discharge specific capacity of Li//AMPAF-QSPE//LiFePO4 reached as high as 137 mAh g−1 at 0.2 °C, and the capacity retention rate was stable at 85% after 200 cycles. This article presents an effective attempt to enhance the overall performance of polymer electrolytes using amino-modified PAF, offering an innovative perspective for the development of electrochemical energy storage technologies.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.