{"title":"New building blocks for \n \n \n F\n 1\n \n ${\\mathbb {F}}_1$\n -geometry: Bands and band schemes","authors":"Matthew Baker, Tong Jin, Oliver Lorscheid","doi":"10.1112/jlms.70125","DOIUrl":null,"url":null,"abstract":"<p>We develop and study a generalization of commutative rings called <i>bands</i>, along with the corresponding geometric theory of <i>band schemes</i>. Bands generalize both hyperrings, in the sense of Krasner, and partial fields in the sense of Semple and Whittle. They form a ring-like counterpart to the field-like category of <i>idylls</i> introduced by the first and third authors in the previous work. The first part of the paper is dedicated to establishing fundamental properties of bands analogous to basic facts in commutative algebra. In particular, we introduce various kinds of ideals in a band and explore their properties, and we study localization, quotients, limits, and colimits. The second part of the paper studies band schemes. After giving the definition, we present some examples of band schemes, along with basic properties of band schemes and morphisms thereof, and we describe functors into some other scheme theories. In the third part, we discuss some “visualizations” of band schemes, which are different topological spaces that one can functorially associate to a band scheme <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70125","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop and study a generalization of commutative rings called bands, along with the corresponding geometric theory of band schemes. Bands generalize both hyperrings, in the sense of Krasner, and partial fields in the sense of Semple and Whittle. They form a ring-like counterpart to the field-like category of idylls introduced by the first and third authors in the previous work. The first part of the paper is dedicated to establishing fundamental properties of bands analogous to basic facts in commutative algebra. In particular, we introduce various kinds of ideals in a band and explore their properties, and we study localization, quotients, limits, and colimits. The second part of the paper studies band schemes. After giving the definition, we present some examples of band schemes, along with basic properties of band schemes and morphisms thereof, and we describe functors into some other scheme theories. In the third part, we discuss some “visualizations” of band schemes, which are different topological spaces that one can functorially associate to a band scheme .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.