{"title":"Pacific-Arctic Ocean Acidification: Decadal Trends and Drivers","authors":"Thomas Caero, Hongjie Wang, Annika Jersild","doi":"10.1029/2024GB008249","DOIUrl":null,"url":null,"abstract":"<p>This study presents the first regional-scale analysis to quantify decadal trends and drivers of surface ocean acidification (OA) across the highly sensitive Pacific-Arctic Region (PAR) using a consistent trend methodology. From 1993 to 2021, the Southern PAR acidified at rates comparable to the global average, with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>pH</mtext>\n <mi>T</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{pH}}_{\\mathrm{T}}$</annotation>\n </semantics></math> declining by 0.018 units <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>dec</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{dec}}^{-1}$</annotation>\n </semantics></math> and aragonite saturation state <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>Ω</mi>\n <mtext>Ar</mtext>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({{\\Omega }}_{\\text{Ar}}\\right)$</annotation>\n </semantics></math> decreasing by 0.063 units <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>dec</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{dec}}^{-1}$</annotation>\n </semantics></math>, primarily driven by anthropogenic <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> uptake. In contrast, the Bering Strait exhibited slower acidification, with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>pH</mtext>\n <mi>T</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{pH}}_{\\mathrm{T}}$</annotation>\n </semantics></math> declining by 0.011 units <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>dec</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{dec}}^{-1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mtext>Ar</mtext>\n </msub>\n </mrow>\n <annotation> ${{\\Omega }}_{\\text{Ar}}$</annotation>\n </semantics></math> decreasing by 0.020 units <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>dec</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{dec}}^{-1}$</annotation>\n </semantics></math>—substantially lower than previously reported—likely due to increased primary productivity. The Northern PAR experienced the most rapid acidification: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>pH</mtext>\n <mi>T</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{pH}}_{\\mathrm{T}}$</annotation>\n </semantics></math> decreased by 0.028 units <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>dec</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{dec}}^{-1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mtext>Ar</mtext>\n </msub>\n </mrow>\n <annotation> ${{\\Omega }}_{\\text{Ar}}$</annotation>\n </semantics></math> by 0.078 units <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>dec</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{dec}}^{-1}$</annotation>\n </semantics></math>, with the Beaufort Gyre acidifying 2–4 times faster than the global mean. This rapid change was driven by rising atmospheric <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> and significant freshening linked to sea ice melt and increased riverine input, which reduced the ocean's buffering capacity. Continued warming will likely exacerbate acidification in regions transitioning from multi-year to seasonal ice. While local processes such as primary productivity can temporarily counteract OA, whether they can offset rising anthropogenic <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> levels remains unclear. This underscores the importance of biogeochemical models that integrate climatic and biological feedbacks, enabling accurate forecasts of OA changes and their impacts on marine ecosystems. These findings highlight the urgent need for sustained monitoring in the PAR, where accelerating changes threaten critical ecosystems.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008249","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008249","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the first regional-scale analysis to quantify decadal trends and drivers of surface ocean acidification (OA) across the highly sensitive Pacific-Arctic Region (PAR) using a consistent trend methodology. From 1993 to 2021, the Southern PAR acidified at rates comparable to the global average, with declining by 0.018 units and aragonite saturation state decreasing by 0.063 units , primarily driven by anthropogenic uptake. In contrast, the Bering Strait exhibited slower acidification, with declining by 0.011 units and decreasing by 0.020 units —substantially lower than previously reported—likely due to increased primary productivity. The Northern PAR experienced the most rapid acidification: decreased by 0.028 units and by 0.078 units , with the Beaufort Gyre acidifying 2–4 times faster than the global mean. This rapid change was driven by rising atmospheric and significant freshening linked to sea ice melt and increased riverine input, which reduced the ocean's buffering capacity. Continued warming will likely exacerbate acidification in regions transitioning from multi-year to seasonal ice. While local processes such as primary productivity can temporarily counteract OA, whether they can offset rising anthropogenic levels remains unclear. This underscores the importance of biogeochemical models that integrate climatic and biological feedbacks, enabling accurate forecasts of OA changes and their impacts on marine ecosystems. These findings highlight the urgent need for sustained monitoring in the PAR, where accelerating changes threaten critical ecosystems.
本研究首次提出了区域尺度的分析,利用一致趋势方法量化了高度敏感的太平洋-北极地区(PAR)表层海洋酸化(OA)的年代际趋势和驱动因素。从1993年到2021年,南部PAR酸化的速度与全球平均水平相当,pH T ${\text{pH}}_{\mathrm{T}}$下降0.018个单位(dec−1 ${\text{dec}}^{-1}$)文石饱和态Ω Ar $\left({{\Omega }}_{\text{Ar}}\right)$降低0.063个单位dec−1${\text{dec}}^{-1}$,主要由人为co2吸收${\text{CO}}_{2}$驱动。相比之下,白令海峡的酸化速度较慢,pH T ${\text{pH}}_{\mathrm{T}}$下降0.011个单位dec−1 ${\text{dec}}^{-1}$和Ω Ar ${{\Omega }}_{\text{Ar}}$下降了0.020个单位(dec - 1 ${\text{dec}}^{-1}$)-大大低于之前的报道-可能是由于初级生产力的提高。PAR北部酸化速度最快;pH T ${\text{pH}}_{\mathrm{T}}$下降了0.028个单位(12−1 ${\text{dec}}^{-1}$)Ω Ar ${{\Omega }}_{\text{Ar}}$乘以0.078个单位dec−1 ${\text{dec}}^{-1}$,波弗特环流酸化速度比全球平均速度快2-4倍。这种快速变化是由大气中二氧化碳含量上升${\text{CO}}_{2}$和与海冰融化和河流输入增加有关的显著清新作用驱动的,这降低了海洋的缓冲能力。持续变暖可能会加剧从多年冰向季节性冰过渡地区的酸化。虽然初级生产力等局部过程可以暂时抵消OA,但它们能否抵消不断上升的人为二氧化碳${\text{CO}}_{2}$水平仍不清楚。 这强调了整合气候和生物反馈的生物地球化学模型的重要性,它能够准确预测OA变化及其对海洋生态系统的影响。这些发现突出了在PAR中进行持续监测的迫切需要,因为加速变化威胁着关键的生态系统。
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.