Solving the Electric Share-A-Ride Problem Using a Hybrid Variable Neighborhood Search Algorithm

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL
Vincent F. Yu, Sy Hoang Do, Pham Tuan Anh, Cheng-Ta Yeh
{"title":"Solving the Electric Share-A-Ride Problem Using a Hybrid Variable Neighborhood Search Algorithm","authors":"Vincent F. Yu,&nbsp;Sy Hoang Do,&nbsp;Pham Tuan Anh,&nbsp;Cheng-Ta Yeh","doi":"10.1155/atr/6687585","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper extends the share-a-ride problem (SARP) by incorporating electric vehicles (EVs) to reduce greenhouse gas (GHG) emissions, thus addressing environmental concerns. We introduce this new extension as the electric share-a-ride problem (E-SARP). We aim to generate E-SARP routing plans where EVs serve all passenger and parcel requests while visiting charging stations (CSs) as necessary for recharging. The objective is to maximize total profit from fulfilling passenger and parcel requests. We develop a mixed-integer programming (MIP) model and propose a hybrid algorithm based on the variable neighborhood search (VNS) framework, integrated with a simulated annealing (SA) acceptance criterion (HVNS). The MIP model provides optimal solutions for small E-SARP instances using the CPLEX solver, while the HVNS algorithm is designed to solve larger E-SARP instances. Numerical experiments are conducted to assess the performance of the proposed HVNS and to provide managerial insights, demonstrating that the use of EVs can effectively address environmental concerns without significantly compromising the profitability of the transportation network.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/6687585","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/6687585","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper extends the share-a-ride problem (SARP) by incorporating electric vehicles (EVs) to reduce greenhouse gas (GHG) emissions, thus addressing environmental concerns. We introduce this new extension as the electric share-a-ride problem (E-SARP). We aim to generate E-SARP routing plans where EVs serve all passenger and parcel requests while visiting charging stations (CSs) as necessary for recharging. The objective is to maximize total profit from fulfilling passenger and parcel requests. We develop a mixed-integer programming (MIP) model and propose a hybrid algorithm based on the variable neighborhood search (VNS) framework, integrated with a simulated annealing (SA) acceptance criterion (HVNS). The MIP model provides optimal solutions for small E-SARP instances using the CPLEX solver, while the HVNS algorithm is designed to solve larger E-SARP instances. Numerical experiments are conducted to assess the performance of the proposed HVNS and to provide managerial insights, demonstrating that the use of EVs can effectively address environmental concerns without significantly compromising the profitability of the transportation network.

Abstract Image

用混合变量邻域搜索算法求解电动拼车问题
本文通过引入电动汽车(ev)来减少温室气体(GHG)排放,从而解决环境问题,扩展了拼车问题(SARP)。我们把这个新扩展称为电动共乘问题(E-SARP)。我们的目标是生成E-SARP路线计划,其中电动汽车在访问充电站(CSs)充电时为所有乘客和包裹提供服务。目标是通过满足乘客和包裹的需求来最大化总利润。我们建立了一个混合整数规划(MIP)模型,并提出了一种基于可变邻域搜索(VNS)框架,结合模拟退火(SA)接受准则(HVNS)的混合算法。MIP模型使用CPLEX求解器为小型E-SARP实例提供最优解,而HVNS算法用于求解大型E-SARP实例。通过数值实验来评估HVNS的性能,并提供管理见解,证明电动汽车的使用可以有效地解决环境问题,而不会显著损害交通网络的盈利能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信