Miranda H. J. Huang, Steve Demarais, Marc D. Schwabenlander, Bronson K. Strickland, Kurt C. VerCauteren, William T. McKinley, Gage Rowden, Corina C. Valencia Tibbitts, Sarah C. Gresch, Stuart S. Lichtenberg, Tiffany M. Wolf, Peter A. Larsen
{"title":"Chronic wasting disease prions on deer feeders and wildlife visitation to deer feeding areas","authors":"Miranda H. J. Huang, Steve Demarais, Marc D. Schwabenlander, Bronson K. Strickland, Kurt C. VerCauteren, William T. McKinley, Gage Rowden, Corina C. Valencia Tibbitts, Sarah C. Gresch, Stuart S. Lichtenberg, Tiffany M. Wolf, Peter A. Larsen","doi":"10.1002/jwmg.70000","DOIUrl":null,"url":null,"abstract":"<p>Eliminating supplemental feeding is a common regulatory action within chronic wasting disease (CWD) management zones. These regulations target the potential for increased animal-animal contact and environmental contamination with CWD prions. Prions, the causative agent of CWD, have been detected on feeder surfaces in CWD-positive, captive deer facilities but not among free-ranging populations, and information on the relative risk of transmission at anthropogenic and natural food sources is limited. In this study, we established and maintained 13 gravity feeders from September 2022 to March 2023 in a CWD zone in northern Mississippi, USA (apparent prevalence ~30%). We set up feeders up in 3 ways: no exclusion (deer feeders, <i>n</i> = 7), exclusion of deer using fencing with holes cut at the ground-level to permit smaller wildlife to enter (raccoon feeders, <i>n</i> = 3), and environmental control feeders, which were fully fenced and not filled with feed (control feeders, <i>n</i> = 3). We swabbed feeder spouts at setup and at 4 intervals approximately 6 weeks apart to test for prion contamination via real-time quaking-induced conversion (RT-QuIC). We detected prions 12 weeks after setup on all deer and raccoon feeders. We compared relative transmission risk using camera traps at these feeders, 6 agronomic plantings for wildlife forage (i.e., food plots), and 7 oak mast trees. Weekly visitation rate by white-tailed deer (<i>Odocoileus virginianus</i>; hereafter: deer) differed (<i>P</i> = 0.02) among deer feeders (median = 24.5 deer/week, range = 15.6–65.7), food plots (median = 12.7, range = 3.8–24.7), and mast trees (median = 2.0, range = 0.4–5.1). Contact rates between individual deer also differed between site types (<i>P</i> < 0.01): deer feeders (median = 2.1 deer-to-deer contacts/week, range = 0–10.1), food plots (median = 0.1, range = 0–4.0), and mast trees (median = 0, range = 0–0.3). Raccoons also visited feeders at greater rates than food plots and mast trees (<i>P</i> < 0.04). Finally, we swabbed 19 feeders in 2 areas where CWD was newly detected, finding prion contamination on swabs from 4 feeders. We show that deer feeders in free-ranging populations with high CWD prevalence become contaminated with CWD prions quickly, becoming a potential site of exposure of deer to CWD prions. Our results also demonstrate the ability to find evidence of prion contamination on deer feeders, even in areas where CWD is newly detected.</p>","PeriodicalId":17504,"journal":{"name":"Journal of Wildlife Management","volume":"89 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jwmg.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wildlife Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jwmg.70000","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eliminating supplemental feeding is a common regulatory action within chronic wasting disease (CWD) management zones. These regulations target the potential for increased animal-animal contact and environmental contamination with CWD prions. Prions, the causative agent of CWD, have been detected on feeder surfaces in CWD-positive, captive deer facilities but not among free-ranging populations, and information on the relative risk of transmission at anthropogenic and natural food sources is limited. In this study, we established and maintained 13 gravity feeders from September 2022 to March 2023 in a CWD zone in northern Mississippi, USA (apparent prevalence ~30%). We set up feeders up in 3 ways: no exclusion (deer feeders, n = 7), exclusion of deer using fencing with holes cut at the ground-level to permit smaller wildlife to enter (raccoon feeders, n = 3), and environmental control feeders, which were fully fenced and not filled with feed (control feeders, n = 3). We swabbed feeder spouts at setup and at 4 intervals approximately 6 weeks apart to test for prion contamination via real-time quaking-induced conversion (RT-QuIC). We detected prions 12 weeks after setup on all deer and raccoon feeders. We compared relative transmission risk using camera traps at these feeders, 6 agronomic plantings for wildlife forage (i.e., food plots), and 7 oak mast trees. Weekly visitation rate by white-tailed deer (Odocoileus virginianus; hereafter: deer) differed (P = 0.02) among deer feeders (median = 24.5 deer/week, range = 15.6–65.7), food plots (median = 12.7, range = 3.8–24.7), and mast trees (median = 2.0, range = 0.4–5.1). Contact rates between individual deer also differed between site types (P < 0.01): deer feeders (median = 2.1 deer-to-deer contacts/week, range = 0–10.1), food plots (median = 0.1, range = 0–4.0), and mast trees (median = 0, range = 0–0.3). Raccoons also visited feeders at greater rates than food plots and mast trees (P < 0.04). Finally, we swabbed 19 feeders in 2 areas where CWD was newly detected, finding prion contamination on swabs from 4 feeders. We show that deer feeders in free-ranging populations with high CWD prevalence become contaminated with CWD prions quickly, becoming a potential site of exposure of deer to CWD prions. Our results also demonstrate the ability to find evidence of prion contamination on deer feeders, even in areas where CWD is newly detected.
期刊介绍:
The Journal of Wildlife Management publishes manuscripts containing information from original research that contributes to basic wildlife science. Suitable topics include investigations into the biology and ecology of wildlife and their habitats that has direct or indirect implications for wildlife management and conservation. This includes basic information on wildlife habitat use, reproduction, genetics, demographics, viability, predator-prey relationships, space-use, movements, behavior, and physiology; but within the context of contemporary management and conservation issues such that the knowledge may ultimately be useful to wildlife practitioners. Also considered are theoretical and conceptual aspects of wildlife science, including development of new approaches to quantitative analyses, modeling of wildlife populations and habitats, and other topics that are germane to advancing wildlife science. Limited reviews or meta analyses will be considered if they provide a meaningful new synthesis or perspective on an appropriate subject. Direct evaluation of management practices or policies should be sent to the Wildlife Society Bulletin, as should papers reporting new tools or techniques. However, papers that report new tools or techniques, or effects of management practices, within the context of a broader study investigating basic wildlife biology and ecology will be considered by The Journal of Wildlife Management. Book reviews of relevant topics in basic wildlife research and biology.