A note on \(L^p\)-\(L^q\) boundedness of Fourier multipliers on noncommutative spaces

IF 0.8 Q2 MATHEMATICS
Michael Ruzhansky, Kanat Tulenov
{"title":"A note on \\(L^p\\)-\\(L^q\\) boundedness of Fourier multipliers on noncommutative spaces","authors":"Michael Ruzhansky,&nbsp;Kanat Tulenov","doi":"10.1007/s43036-025-00436-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study Fourier multipliers on noncommutative spaces. In particular, we show a simple proof of <span>\\(L^p\\)</span>-<span>\\(L^q\\)</span> estimate of Fourier multipliers on general noncommutative spaces associated with semifinite von Neumann algebras. This includes the case of Fourier multipliers on general locally compact unimodular groups.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-025-00436-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00436-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study Fourier multipliers on noncommutative spaces. In particular, we show a simple proof of \(L^p\)-\(L^q\) estimate of Fourier multipliers on general noncommutative spaces associated with semifinite von Neumann algebras. This includes the case of Fourier multipliers on general locally compact unimodular groups.

关于非交换空间上傅里叶乘子的\(L^p\) - \(L^q\)有界性的注记
在这项工作中,我们研究了非交换空间上的傅里叶乘子。特别地,我们给出了在与半有限冯·诺伊曼代数相关的一般非交换空间上的傅里叶乘子的\(L^p\) - \(L^q\)估计的一个简单证明。这包括傅里叶乘子在一般局部紧单模群上的情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信