On Second Order Elliptic Systems of Partial Differential Equations in Clifford Analysis

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Daniel Alfonso Santiesteban, Ricardo Abreu Blaya, Juan Bory Reyes
{"title":"On Second Order Elliptic Systems of Partial Differential Equations in Clifford Analysis","authors":"Daniel Alfonso Santiesteban,&nbsp;Ricardo Abreu Blaya,&nbsp;Juan Bory Reyes","doi":"10.1007/s00006-025-01377-8","DOIUrl":null,"url":null,"abstract":"<div><p>The paper deals with two second order elliptic systems of partial differential equations in Clifford analysis. They are of the form <span>\\({^\\phi \\!\\underline{\\partial }}f{^\\psi \\!\\underline{\\partial }}=0\\)</span> and <span>\\(f{^\\phi \\!\\underline{\\partial }}{^\\psi \\!\\underline{\\partial }}=0\\)</span>, where <span>\\({^\\phi \\!\\underline{\\partial }}\\)</span> stands for the Dirac operator related to a structural set <span>\\(\\phi \\)</span>. Their solutions, known as <span>\\((\\phi ,\\psi )\\)</span>-inframonogenic and <span>\\((\\phi ,\\psi )\\)</span>-harmonic functions, not every enjoy the nice properties and usual structure of the harmonic ones. We describe the precise relation between these two classes of functions and show their strong link to the Laplace operator. Finally, we apply a multi-dimensional Ahlfors-Beurling transform, to prove that some relative function spaces are indeed isomorphic.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01377-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The paper deals with two second order elliptic systems of partial differential equations in Clifford analysis. They are of the form \({^\phi \!\underline{\partial }}f{^\psi \!\underline{\partial }}=0\) and \(f{^\phi \!\underline{\partial }}{^\psi \!\underline{\partial }}=0\), where \({^\phi \!\underline{\partial }}\) stands for the Dirac operator related to a structural set \(\phi \). Their solutions, known as \((\phi ,\psi )\)-inframonogenic and \((\phi ,\psi )\)-harmonic functions, not every enjoy the nice properties and usual structure of the harmonic ones. We describe the precise relation between these two classes of functions and show their strong link to the Laplace operator. Finally, we apply a multi-dimensional Ahlfors-Beurling transform, to prove that some relative function spaces are indeed isomorphic.

二阶椭圆型偏微分方程组的Clifford分析
本文涉及克利福德分析中的两个二阶椭圆偏微分方程系统。它们的形式是:({^\phi (!)underline (partial)}}f{^\psi (!)underline (partial)}}=0\)和(f{^\phi (!)underline (partial)}}{^\psi (!)!=0),其中 ({^\phi \!它们的解被称为 \((\phi ,\psi )\)-inframonogenic 和 \((\phi ,\psi )\)-harmonic 函数,并不都享有谐函数的良好性质和通常结构。我们描述了这两类函数之间的精确关系,并展示了它们与拉普拉斯算子的紧密联系。最后,我们应用多维 Ahlfors-Beurling 变换来证明某些相对函数空间确实是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信