Efrosiniia Karatetskaia, Aikan Shykhmamedov, Konstantin Soldatkin, Alexey Kazakov
{"title":"Scenarios for the Creation of Hyperchaotic Attractors with Three Positive Lyapunov Exponents","authors":"Efrosiniia Karatetskaia, Aikan Shykhmamedov, Konstantin Soldatkin, Alexey Kazakov","doi":"10.1134/S156035472502008X","DOIUrl":null,"url":null,"abstract":"<div><p>We study hyperchaotic attractors characterized by three positive Lyapunov exponents in numerical experiments. In order to possess this property, periodic orbits belonging to the attractor should have a three-dimensional unstable invariant manifold. Starting with a stable fixed point we describe several bifurcation scenarios that create such periodic orbits inside the attractor. These scenarios include cascades of alternating period-doubling and Neimark – Sacker bifurcations which, as we show, naturally appear near the cascade of codimension-2 period-doubling bifurcations, when periodic orbits along the cascade have multipliers <span>\\((-1,e^{i\\phi},e^{-i\\phi})\\)</span>. The proposed scenarios are illustrated by examples of the three-dimensional Kaneko endomorphism and a four-dimensional Hénon map.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"30 2","pages":"306 - 324"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S156035472502008X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study hyperchaotic attractors characterized by three positive Lyapunov exponents in numerical experiments. In order to possess this property, periodic orbits belonging to the attractor should have a three-dimensional unstable invariant manifold. Starting with a stable fixed point we describe several bifurcation scenarios that create such periodic orbits inside the attractor. These scenarios include cascades of alternating period-doubling and Neimark – Sacker bifurcations which, as we show, naturally appear near the cascade of codimension-2 period-doubling bifurcations, when periodic orbits along the cascade have multipliers \((-1,e^{i\phi},e^{-i\phi})\). The proposed scenarios are illustrated by examples of the three-dimensional Kaneko endomorphism and a four-dimensional Hénon map.
期刊介绍:
Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.