Mohammad Behnam Rad, Seyed Reza Mohebbi, Abbas Yadegar, Hedayatollah Ghourchian
{"title":"Porous GNPs assisted LAMP-CRISPR/Cas12a amperometric biosensor as a potential point of care testing system for SARS-CoV-2","authors":"Mohammad Behnam Rad, Seyed Reza Mohebbi, Abbas Yadegar, Hedayatollah Ghourchian","doi":"10.1007/s00604-025-07094-0","DOIUrl":null,"url":null,"abstract":"<div><p>A simple and ultrasensitive amperometric biosensor is introduced which has the potential to be applied as a point of care test for SARS-CoV-2 monitoring. It was prepared by integrating the reverse transcription loop-mediated isothermal amplification (RT‑LAMP) and CRISPR/Cas12a nuclease activity on a modified gold screen-printed electrode (GSPE). The GSPE is modified with double-end thiolated oligonucleotide reporters conjugated to porous gold nanoparticles (PGNPs) and inserted into a homemade poly-methyl methacrylate cartridge. This biosensor was integrated with a low-cost electronic kit to make a platform with the potential to be applied as a point-of-care testing system. The PGNPs on the reporters create a dense, negatively charged barrier that repels the redox couple of [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup> from the GSPE surface. Upon the addition of a real sample, followed by LAMP amplification and Cas12a nuclease activity on disposable GSPE, in the presence of SARS-CoV-2, the single-guide RNA binds to the target sequence and activates Cas12a. The activated Cas12a then cleaves the reporters, releasing the PGNPs. This removal of electrostatic hindrance allows the redox couple of [Fe(CN)<sub>6</sub>]<sup>3−/4−</sup> to approach the positively charged GSPE, enhancing the amperometric signal. This biosensor offers an outstanding detection limit of 143 zM (~ 86 copies/mL) and a linear response from 4.7 to 7062 aM for SARS-CoV-2 real samples. By using double-end thiolated reporters and porous GNPs, this novel testing system makes it possible to minimize the required sample volume and reagent costs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07094-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A simple and ultrasensitive amperometric biosensor is introduced which has the potential to be applied as a point of care test for SARS-CoV-2 monitoring. It was prepared by integrating the reverse transcription loop-mediated isothermal amplification (RT‑LAMP) and CRISPR/Cas12a nuclease activity on a modified gold screen-printed electrode (GSPE). The GSPE is modified with double-end thiolated oligonucleotide reporters conjugated to porous gold nanoparticles (PGNPs) and inserted into a homemade poly-methyl methacrylate cartridge. This biosensor was integrated with a low-cost electronic kit to make a platform with the potential to be applied as a point-of-care testing system. The PGNPs on the reporters create a dense, negatively charged barrier that repels the redox couple of [Fe(CN)6]3−/4− from the GSPE surface. Upon the addition of a real sample, followed by LAMP amplification and Cas12a nuclease activity on disposable GSPE, in the presence of SARS-CoV-2, the single-guide RNA binds to the target sequence and activates Cas12a. The activated Cas12a then cleaves the reporters, releasing the PGNPs. This removal of electrostatic hindrance allows the redox couple of [Fe(CN)6]3−/4− to approach the positively charged GSPE, enhancing the amperometric signal. This biosensor offers an outstanding detection limit of 143 zM (~ 86 copies/mL) and a linear response from 4.7 to 7062 aM for SARS-CoV-2 real samples. By using double-end thiolated reporters and porous GNPs, this novel testing system makes it possible to minimize the required sample volume and reagent costs.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.