{"title":"Catalytic Properties of Immobilized Phytase of Silvania hatchlandensis FG 3.9.1","authors":"K. G. Semenova, Yu. G. Maksimova","doi":"10.1134/S0003683824606632","DOIUrl":null,"url":null,"abstract":"<p>A phytase preparation was obtained from the cells of haloalkalitolerant bacteria identified as <i>Silvania hatchlandensis</i> isolated from the soil of a soda sludge storage facility. When the enzyme was immobilized in barium alginate gel and cross-linked with activated chitosan, 97 and 95% of the native protein activity, respectively, was retained. It was shown that 70% of the phytase activity was retained when using the enzyme immobilized in alginate and bound to chitosan over six consecutive reaction cycles. Immobilization resulted in an insignificant decrease in the maximum reaction rate and a decrease in the Michaelis constant. Immobilized phytase was more thermally stable compared to the free form of the enzyme: the thermal inactivation constant of the immobilized enzyme at 70°C decreased by 1.1–1.2 times. The immobilized enzyme retained activity at pH 3–12; the pH optimum of the enzyme after immobilization did not change and was equal to 5.0. The specific activity of the enzyme covalently attached to activated chitosan is higher than that of the native enzyme in low and high pH media. Immobilized phytase of haloalkalitolerant <i>Silvania hatchlandensis</i> can be used in feed production and other areas of agriculture.</p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"61 1","pages":"84 - 91"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0003683824606632","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A phytase preparation was obtained from the cells of haloalkalitolerant bacteria identified as Silvania hatchlandensis isolated from the soil of a soda sludge storage facility. When the enzyme was immobilized in barium alginate gel and cross-linked with activated chitosan, 97 and 95% of the native protein activity, respectively, was retained. It was shown that 70% of the phytase activity was retained when using the enzyme immobilized in alginate and bound to chitosan over six consecutive reaction cycles. Immobilization resulted in an insignificant decrease in the maximum reaction rate and a decrease in the Michaelis constant. Immobilized phytase was more thermally stable compared to the free form of the enzyme: the thermal inactivation constant of the immobilized enzyme at 70°C decreased by 1.1–1.2 times. The immobilized enzyme retained activity at pH 3–12; the pH optimum of the enzyme after immobilization did not change and was equal to 5.0. The specific activity of the enzyme covalently attached to activated chitosan is higher than that of the native enzyme in low and high pH media. Immobilized phytase of haloalkalitolerant Silvania hatchlandensis can be used in feed production and other areas of agriculture.
期刊介绍:
Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.