Catalytic Properties of Immobilized Phytase of Silvania hatchlandensis FG 3.9.1

IF 1 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
K. G. Semenova, Yu. G. Maksimova
{"title":"Catalytic Properties of Immobilized Phytase of Silvania hatchlandensis FG 3.9.1","authors":"K. G. Semenova,&nbsp;Yu. G. Maksimova","doi":"10.1134/S0003683824606632","DOIUrl":null,"url":null,"abstract":"<p>A phytase preparation was obtained from the cells of haloalkalitolerant bacteria identified as <i>Silvania hatchlandensis</i> isolated from the soil of a soda sludge storage facility. When the enzyme was immobilized in barium alginate gel and cross-linked with activated chitosan, 97 and 95% of the native protein activity, respectively, was retained. It was shown that 70% of the phytase activity was retained when using the enzyme immobilized in alginate and bound to chitosan over six consecutive reaction cycles. Immobilization resulted in an insignificant decrease in the maximum reaction rate and a decrease in the Michaelis constant. Immobilized phytase was more thermally stable compared to the free form of the enzyme: the thermal inactivation constant of the immobilized enzyme at 70°C decreased by 1.1–1.2 times. The immobilized enzyme retained activity at pH 3–12; the pH optimum of the enzyme after immobilization did not change and was equal to 5.0. The specific activity of the enzyme covalently attached to activated chitosan is higher than that of the native enzyme in low and high pH media. Immobilized phytase of haloalkalitolerant <i>Silvania hatchlandensis</i> can be used in feed production and other areas of agriculture.</p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"61 1","pages":"84 - 91"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0003683824606632","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A phytase preparation was obtained from the cells of haloalkalitolerant bacteria identified as Silvania hatchlandensis isolated from the soil of a soda sludge storage facility. When the enzyme was immobilized in barium alginate gel and cross-linked with activated chitosan, 97 and 95% of the native protein activity, respectively, was retained. It was shown that 70% of the phytase activity was retained when using the enzyme immobilized in alginate and bound to chitosan over six consecutive reaction cycles. Immobilization resulted in an insignificant decrease in the maximum reaction rate and a decrease in the Michaelis constant. Immobilized phytase was more thermally stable compared to the free form of the enzyme: the thermal inactivation constant of the immobilized enzyme at 70°C decreased by 1.1–1.2 times. The immobilized enzyme retained activity at pH 3–12; the pH optimum of the enzyme after immobilization did not change and was equal to 5.0. The specific activity of the enzyme covalently attached to activated chitosan is higher than that of the native enzyme in low and high pH media. Immobilized phytase of haloalkalitolerant Silvania hatchlandensis can be used in feed production and other areas of agriculture.

Abstract Image

Silvania hatchlandensis FG 3.9.1 固定化植酸酶的催化特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Microbiology
Applied Biochemistry and Microbiology 生物-生物工程与应用微生物
CiteScore
1.70
自引率
12.50%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信