Wrap-around self-assembly of interspersed topological organic heterostructures based on multi-faceted alignment†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jin Feng, Yang Wu, Ze-Qi Yao, Chuan-Zeng Wang, Shu-Ping Zhuo, Hong-Tao Lin, Shu-Hai Chen and Xue-Dong Wang
{"title":"Wrap-around self-assembly of interspersed topological organic heterostructures based on multi-faceted alignment†","authors":"Jin Feng, Yang Wu, Ze-Qi Yao, Chuan-Zeng Wang, Shu-Ping Zhuo, Hong-Tao Lin, Shu-Hai Chen and Xue-Dong Wang","doi":"10.1039/D4QM01095G","DOIUrl":null,"url":null,"abstract":"<p >Organic low-dimensional heterostructures, with unique optoelectronic properties and flexible material design, provide new material foundations and technical means for optical interconnects and integrated optoelectronics. However, achieving precisely organized organic low-dimensional heterostructures is limited by homogeneous nucleation and interface energy mismatch between different molecules. A wrap-around self-assembly strategy is proposed, utilizing multi-faceted alignment to construct interspersed topological organic low-dimensional heterostructures. Interspersed topological heterostructures with precise spatial organization from bottom to top were successfully fabricated by controlling the sequential nucleation and growth of different crystals through stepwise solution self-assembly. Multi-faceted lattice matching promotes effective structural integration between one-dimensional (1D) microgranules and two-dimensional (2D) microsheets with the ultralow lattice mismatch rates <em>η</em> of 0.7% and 0.3%, respectively. Notably, the unique serial arrangement of microrods and microsheets enables photon coupling from 1D to 2D. The dimensional cross-guide coupling process facilitates optical interconnection, leading to more efficient optical signal transmission and processing, thereby enhancing the performance of optical interconnect technologies in information communication and optoelectronic devices.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 8","pages":" 1259-1266"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm01095g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic low-dimensional heterostructures, with unique optoelectronic properties and flexible material design, provide new material foundations and technical means for optical interconnects and integrated optoelectronics. However, achieving precisely organized organic low-dimensional heterostructures is limited by homogeneous nucleation and interface energy mismatch between different molecules. A wrap-around self-assembly strategy is proposed, utilizing multi-faceted alignment to construct interspersed topological organic low-dimensional heterostructures. Interspersed topological heterostructures with precise spatial organization from bottom to top were successfully fabricated by controlling the sequential nucleation and growth of different crystals through stepwise solution self-assembly. Multi-faceted lattice matching promotes effective structural integration between one-dimensional (1D) microgranules and two-dimensional (2D) microsheets with the ultralow lattice mismatch rates η of 0.7% and 0.3%, respectively. Notably, the unique serial arrangement of microrods and microsheets enables photon coupling from 1D to 2D. The dimensional cross-guide coupling process facilitates optical interconnection, leading to more efficient optical signal transmission and processing, thereby enhancing the performance of optical interconnect technologies in information communication and optoelectronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信