Xiao Xu, Min Zhou, Ting Wu, Zhaowei Chen and Huanghao Yang
{"title":"Pickering emulsion-based biomimetic microreactors","authors":"Xiao Xu, Min Zhou, Ting Wu, Zhaowei Chen and Huanghao Yang","doi":"10.1039/D5QM00079C","DOIUrl":null,"url":null,"abstract":"<p >Pickering emulsions are dispersions of two immiscible liquids stabilized by surface-active colloidal nano-/microparticles. Their compartmentalized structures closely resemble the characteristics of cellular and subcellular systems, enabling the development of biomimetic microreactors that enhance catalytic processes. By enlarging interfacial areas while effectively partitioning reactants into their preferred phases, Pickering emulsion-based microreactors improve kinetic parameters and prevent unwanted interactions. The adaptability of Pickering emulsions is further augmented through modifications to the properties and composition of the particle emulsifiers, rendering them multifunctional and facilitating efficient reactions between immiscible phases, such as oil and water, especially when the emulsifiers themselves act as catalysts. This review summarizes recent advances in Pickering emulsion-based biomimetic microreactors, focusing on the versatile choice of various particles, design principles, and their applications in facilitating biphasic catalysis in a biomimetic way. We also discuss the challenges and future perspectives for further refining these microreactors for enhanced biphasic catalytic processes.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 8","pages":" 1290-1311"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00079c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pickering emulsions are dispersions of two immiscible liquids stabilized by surface-active colloidal nano-/microparticles. Their compartmentalized structures closely resemble the characteristics of cellular and subcellular systems, enabling the development of biomimetic microreactors that enhance catalytic processes. By enlarging interfacial areas while effectively partitioning reactants into their preferred phases, Pickering emulsion-based microreactors improve kinetic parameters and prevent unwanted interactions. The adaptability of Pickering emulsions is further augmented through modifications to the properties and composition of the particle emulsifiers, rendering them multifunctional and facilitating efficient reactions between immiscible phases, such as oil and water, especially when the emulsifiers themselves act as catalysts. This review summarizes recent advances in Pickering emulsion-based biomimetic microreactors, focusing on the versatile choice of various particles, design principles, and their applications in facilitating biphasic catalysis in a biomimetic way. We also discuss the challenges and future perspectives for further refining these microreactors for enhanced biphasic catalytic processes.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.