A machine learning-assisted design for adjusting the solubility of ibuprofen-related binary compounds: a data driven approach†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hussein A. K. Kyhoiesh, Wissam A. Hweidi, Mohanad H. Najm, Imad I. Dawood, Ashraf Y. Elnaggar, Islam H. El Azab and Mohamed H. H. Mahmoud
{"title":"A machine learning-assisted design for adjusting the solubility of ibuprofen-related binary compounds: a data driven approach†","authors":"Hussein A. K. Kyhoiesh, Wissam A. Hweidi, Mohanad H. Najm, Imad I. Dawood, Ashraf Y. Elnaggar, Islam H. El Azab and Mohamed H. H. Mahmoud","doi":"10.1039/D5NJ00114E","DOIUrl":null,"url":null,"abstract":"<p >\r\n <em>Purpose</em>: monitoring the solubilities of pharmaceuticals is a critically important bottleneck for their development, since it influences their efficacy and bioavailability. To overcome this challenge, we leverage a machine learning (ML) technique to forecast and optimize solubility in compounds related to ibuprofen. <em>Method</em>: our comprehensive dataset, comprising over 1126 data points acquired from the literature, was analyzed using molecular descriptors extracted from molecular electrostatic potentials (MEPs), Lipinski's rule of five, and hydrogen bonding parameters. EdgeCov, linear, and random forest regression – three of the best ML models, achieved remarkable predictive power, with <em>R</em><small><sup>2</sup></small> values ranging from 0.86 to 0.92 and root mean square errors (RMSEs) between 0.002 and 0.34. <em>Results</em>: with compounds exceeding 80 g L<small><sup>−1</sup></small>, solubility mapping revealed a significant correlation between hydroxyl groups and enhanced solubility. Our study illustrates the potential for ML-driven design to streamline pharmaceutical development, predicting aqueous solubility prior to manufacturing and conserving valuable resources. By identifying appropriate molecular attributes, our approach enables the rational design of solubility-optimized pharmaceuticals, promoting bioavailability and therapeutic efficacy. <em>Conclusion</em>: this innovative framework accelerates the discovery of effective, solubility-optimized medications with broad implications for pharmaceutical research and development.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 15","pages":" 6421-6432"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00114e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: monitoring the solubilities of pharmaceuticals is a critically important bottleneck for their development, since it influences their efficacy and bioavailability. To overcome this challenge, we leverage a machine learning (ML) technique to forecast and optimize solubility in compounds related to ibuprofen. Method: our comprehensive dataset, comprising over 1126 data points acquired from the literature, was analyzed using molecular descriptors extracted from molecular electrostatic potentials (MEPs), Lipinski's rule of five, and hydrogen bonding parameters. EdgeCov, linear, and random forest regression – three of the best ML models, achieved remarkable predictive power, with R2 values ranging from 0.86 to 0.92 and root mean square errors (RMSEs) between 0.002 and 0.34. Results: with compounds exceeding 80 g L−1, solubility mapping revealed a significant correlation between hydroxyl groups and enhanced solubility. Our study illustrates the potential for ML-driven design to streamline pharmaceutical development, predicting aqueous solubility prior to manufacturing and conserving valuable resources. By identifying appropriate molecular attributes, our approach enables the rational design of solubility-optimized pharmaceuticals, promoting bioavailability and therapeutic efficacy. Conclusion: this innovative framework accelerates the discovery of effective, solubility-optimized medications with broad implications for pharmaceutical research and development.

Abstract Image

调节布洛芬相关二元化合物溶解度的机器学习辅助设计:数据驱动方法
目的:监测药物的溶解度是其开发的一个至关重要的瓶颈,因为它影响其功效和生物利用度。为了克服这一挑战,我们利用机器学习(ML)技术来预测和优化与布洛芬相关的化合物的溶解度。方法:我们的综合数据集包括从文献中获得的超过1126个数据点,使用从分子静电势(MEPs)提取的分子描述符、Lipinski的五定律和氢键参数进行分析。EdgeCov,线性和随机森林回归-三种最好的ML模型,取得了显着的预测能力,R2值在0.86至0.92之间,均方根误差(rmse)在0.002至0.34之间。结果:当化合物超过80 g L−1时,溶解度图谱显示羟基与溶解度增强之间存在显著相关性。我们的研究说明了机器学习驱动的设计在简化药物开发方面的潜力,在制造之前预测水溶性并节省宝贵的资源。通过识别适当的分子属性,我们的方法可以合理设计溶解度优化的药物,提高生物利用度和治疗效果。结论:这一创新框架加速了有效、溶解度优化药物的发现,对药物研究和开发具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信