{"title":"Adaptive Frame-Rate Partitioned Video SAR","authors":"Zhengyang Sun;Liwu Wen;Jinshan Ding","doi":"10.1109/TRS.2025.3553116","DOIUrl":null,"url":null,"abstract":"Video synthetic aperture radar (ViSAR) is a promising technology for the surveillance of ground-moving targets. Traditionally, ViSAR imaging and moving target tracking are performed sequentially, where high-frame-rate imaging is applied to the entire SAR scene. However, this approach generates redundant information that is often unnecessary for ViSAR applications. We propose a partitioned adaptive frame-rate (PAFR) ViSAR processing strategy, which adaptively partitions the SAR scene, applying high-frame-rate imaging to potential target regions and low frame rate to large static areas. An integrated imaging and tracking algorithm that synthesizes back-projection (BP) and track-before-detect (TBD) techniques has been derived for efficient bidirectional information exchange. BP imaging provides high-resolution measurements to refine tracking parameters, while TBD tracking offers predictive data to guide the adaptive partitioning of the imaging area. Additionally, we enhance the traditional dynamic programming-based TBD (DP-TBD) algorithm by incorporating the morphological features of target shadows, allowing for more accurate corrections and refinements of predicted states. This enhancement significantly improves both tracking accuracy and speed. The experimental results from airborne radar data have proven the capability of the proposed algorithm to achieve both efficient PAFR imaging and fast target tracking simultaneously, which paves the way for more potential applications in ViSAR.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"576-590"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10935739/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Video synthetic aperture radar (ViSAR) is a promising technology for the surveillance of ground-moving targets. Traditionally, ViSAR imaging and moving target tracking are performed sequentially, where high-frame-rate imaging is applied to the entire SAR scene. However, this approach generates redundant information that is often unnecessary for ViSAR applications. We propose a partitioned adaptive frame-rate (PAFR) ViSAR processing strategy, which adaptively partitions the SAR scene, applying high-frame-rate imaging to potential target regions and low frame rate to large static areas. An integrated imaging and tracking algorithm that synthesizes back-projection (BP) and track-before-detect (TBD) techniques has been derived for efficient bidirectional information exchange. BP imaging provides high-resolution measurements to refine tracking parameters, while TBD tracking offers predictive data to guide the adaptive partitioning of the imaging area. Additionally, we enhance the traditional dynamic programming-based TBD (DP-TBD) algorithm by incorporating the morphological features of target shadows, allowing for more accurate corrections and refinements of predicted states. This enhancement significantly improves both tracking accuracy and speed. The experimental results from airborne radar data have proven the capability of the proposed algorithm to achieve both efficient PAFR imaging and fast target tracking simultaneously, which paves the way for more potential applications in ViSAR.